HOD Analysis for Admissible Structures Vienna Inner Model Theory Conference

Jan Kruschewski

June 27, 2024

Jan Kruschewski HOD Analysis for Admissible Structures

This is joint work with Farmer Schlutzenberg.

イロト イ理ト イヨト イヨト

æ

2 The Analysis of Σ_1 -HOD of $L_{\alpha_1}[x_1, G_1]$

Jan Kruschewski HOD Analysis for Admissible Structures

Let $x \in \mathbb{R}$ be fixed such that $M_1^{\sharp} \in L[x]$ and let κ_x be the least inaccessible cardinal of L[x]. Let $G \subset \text{Col}(\omega, < \kappa_x)$ be L[x]-generic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $x \in \mathbb{R}$ be fixed such that $M_1^{\sharp} \in L[x]$ and let κ_x be the least inaccessible cardinal of L[x]. Let $G \subset \text{Col}(\omega, < \kappa_x)$ be L[x]-generic.

Let $x \in \mathbb{R}$ be fixed such that $M_1^{\sharp} \in L[x]$ and let κ_x be the least inaccessible cardinal of L[x]. Let $G \subset \text{Col}(\omega, < \kappa_x)$ be L[x]-generic.

Definition

Let $(\mathcal{F}, \rightarrow)$ be the directed system of all Σ -iterates of M_1 which are countable in L[x, G], where $N \rightarrow P$ if P is a Σ -iterate of N.

Let \mathcal{M}_{∞} be the direct limit of $(\mathcal{F}, \rightarrow)$ by the iteration maps given by Σ . Let δ_{∞} be the Woodin cardinal of \mathcal{M}_{∞} and κ_{∞} the least inaccessible of \mathcal{M}_{∞} greater than δ_{∞} . Let Λ be the restriction of Σ to finite stacks of normal trees on \mathcal{M}_{∞} such that $\vec{\mathcal{T}} \in \mathcal{M}_{\infty} | \kappa_{\infty}$.

Theorem (Steel, Woodin)

Suppose that every real has a sharp and M_1^{\sharp} is $(\omega, \omega_1, \omega_1)$ -iterable. Then $HOD^{L[x,G]} = \mathcal{M}_{\infty}[\Lambda]$.

A naive idea of showing that $\mathcal{M}_{\infty} \subset \text{HOD}^{L[x,G]}$ would be to try to show that $(\mathcal{F}, \rightarrow) \in L[x, G]$ and then compute \mathcal{M}_{∞} from this.

A naive idea of showing that $\mathcal{M}_{\infty} \subset \text{HOD}^{L[x,G]}$ would be to try to show that $(\mathcal{F}, \rightarrow) \in L[x, G]$ and then compute \mathcal{M}_{∞} from this. However: If $i_{\mathcal{T}} : M_1 \rightarrow P$ is in L[x, G], where \mathcal{T} is the canonical tree which makes x generic over M_1 for the extender algebra of M_1 , then $i_{\mathcal{T}}$ singularizes the ω_1 of L[x, G].

Goal: Define inside L[x, G] a direct limit system which also produces \mathcal{M}_{∞} .

Jan Kruschewski HOD Analysis for Admissible Structures

・ロト ・聞 ト ・ ヨト ・ ヨトー

æ

Goal: Define inside L[x, G] a direct limit system which also produces \mathcal{M}_{∞} . Inside L[x, G] define a directed order $(\tilde{\mathcal{D}}, --)$ such that $N \in \mathcal{D}$ if N is " M_1 -like" and $N \rightarrow P$ if P is a "pseudo-iterate" of N.

Goal: Define inside L[x, G] a direct limit system which also produces \mathcal{M}_{∞} . Inside L[x, G] define a directed order $(\tilde{\mathcal{D}}, --)$ such that $N \in \mathcal{D}$ if N is " M_1 -like" and $N \rightarrow P$ if P is a "pseudo-iterate" of N. Then we obtain a direct limit system

$$\mathcal{D} := \{ H_s^N \mid N \in \tilde{\mathcal{D}} \land s \in [\mathrm{OR}]^{<\omega} \},\$$

Goal: Define inside L[x, G] a direct limit system which also produces \mathcal{M}_{∞} . Inside L[x, G] define a directed order $(\tilde{\mathcal{D}}, - \cdot \cdot)$ such that $N \in \mathcal{D}$ if N is " M_1 -like" and $N \rightarrow P$ if P is a "pseudo-iterate" of N. Then we obtain a direct limit system

$$\mathcal{D} := \{ H_s^N \mid N \in \tilde{\mathcal{D}} \land s \in [\mathrm{OR}]^{<\omega} \},\$$

where

$$H_s^N = \operatorname{Hull}_{\omega}^{N||\max(s)}(s^- \cup \gamma_s^N),$$

Goal: Define inside L[x, G] a direct limit system which also produces \mathcal{M}_{∞} . Inside L[x, G] define a directed order $(\tilde{\mathcal{D}}, - \cdot \cdot)$ such that $N \in \mathcal{D}$ if N is " M_1 -like" and $N \rightarrow P$ if P is a "pseudo-iterate" of N. Then we obtain a direct limit system

$$\mathcal{D} := \{ H_s^N \mid N \in \tilde{\mathcal{D}} \land s \in [\mathrm{OR}]^{<\omega} \},\$$

where

$$H_s^N = \operatorname{Hull}_{\omega}^{N||\max(s)}(s^- \cup \gamma_s^N),$$

with maps

$$\pi_{(P,s)(N,t)}\colon H^N_s\to H^P_t,$$

with direct limit $M'_{\infty} \subset \text{HOD}^{L[x,G]}$.

In order to show that $M_{\infty} = M'_{\infty}$ it is crucial that the maps $\pi_{(P,s)(N,t)}$ in \mathcal{D} sufficiently agree with the maps i_{NP} given by Σ if $N, P \in \mathcal{F}$.

In order to show that $M_{\infty} = M'_{\infty}$ it is crucial that the maps $\pi_{(P,s)(N,t)}$ in \mathcal{D} sufficiently agree with the maps i_{NP} given by Σ if $N, P \in \mathcal{F}$. This is assured by the Silver indiscernibles of L[x, G] which essentially give fixed points for the embeddings in $(\mathcal{F}, \rightarrow)$.

Question

Can one do a similar analysis for admissible structures?

Jan Kruschewski HOD Analysis for Admissible Structures

イロト イポト イヨト イヨト

æ

Replacing M_1 with:

Definition

Let \mathcal{M}_1^{ad} be the least mouse which models

- KP,
- V = L[E],
- there is a Woodin cardinal δ , and
- there is an inaccessible κ such that $\delta < \kappa$ and κ^+ exists.

Let Σ_1^{ad} be the unique $(\omega, \omega_1, \omega_1)$ -iteration strategy for $\mathcal{M}_1^{\text{ad}}$.

Replacing L[x, G] with:

Definition

Let $x_1 \in \mathbb{R}$ be such that $x_1 \leq_T \mathcal{M}_1^{ad}$ and let α_1 be the least β such that

 $L_{\beta}[x_1] \models \text{KP} + \exists \kappa (``\kappa \text{ is inaccessible}'' \land ``\kappa^+ \text{ exists}'').$

Let $G_1 \subset \text{Col}(\omega, < \kappa_1)$ be $L_{\alpha_1}[x_1]$ -generic, where κ_1 is the inaccessible of $L_{\alpha_1}[x_1]$.

ヘロト 人間 とくほとく ほとう

Replacing $HOD^{L[x,G]}$ with:

Definition

Let Σ_1 -OD be the set of all elements of $L_{\alpha_1}[x_1, G_1]$ which are ordinal-definable over $L_{\alpha_1}[x_1, G_1]$ via a Σ_1 -formula. Let Σ_1 -HOD be the set of all $a \in L_{\alpha_1}[x_1, G_1]$ such that $tc(a) \subset \Sigma_1$ -OD.

Let $(\mathcal{F}^{ad}, \rightarrow)$ be the directed system of all Σ^{ad} -iterates which are countable in $L_{\alpha_1}[x_1, G_1]$, where $N \rightarrow P$ if P is a Σ^{ad} -iterate of N.

Definition

Let \mathcal{M}_{∞} be the direct limit of $(\mathcal{F}^{ad}, \rightarrow)$ by the iteration maps given by Σ^{ad} . Let δ_{∞} be the Woodin cardinal of \mathcal{M}_{∞} and κ_{∞} the least inaccessible of \mathcal{M}_{∞} greater than δ_{∞} . Let Λ^{ad} be the restriction of Σ^{ad} to finite stacks of normal trees on \mathcal{M}_{∞} such that $\vec{\mathcal{T}} \in \mathcal{M}_{\infty} | \kappa_{\infty}$.

Theorem (K., Schlutzenberg)

Suppose that there is a Woodin cardinal. Then Σ_1 -HOD = $\mathcal{M}_{\infty}[\Lambda^{ad}]$.

イロト イポト イヨト イヨト

э

The main obstacle in adopting the proof of the analysis of $HOD^{L[x,G]}$ is finding a suitable replacement for the use of indiscernibles.

Let
$$\mathbb{R}^+ = \bigcup_{\beta < \kappa} \mathbb{R}^{L_{\alpha_1}[x_1, G_1 \upharpoonright \beta]}$$
.

Jan Kruschewski HOD Analysis for Admissible Structures

ヘロト 入園 とくほとく ほとう

3

Let
$$\mathbb{R}^+ = \bigcup_{\beta < \kappa} \mathbb{R}^{L_{\alpha_1}[x_1, G_1 | \beta]}$$
.

Let *T* be the tree which searches for a sequence

 $\langle \gamma_n, \beta_n, m_n \mid n < \omega \rangle$ such that

$$\bullet \quad \kappa < \beta_n < \gamma_n < \kappa^+,$$

イロト イポト イヨト イヨト

э

Let
$$\mathbb{R}^+ = \bigcup_{\beta < \kappa} \mathbb{R}^{L_{\alpha_1}[x_1, G_1 | \beta]}$$
.

Let *T* be the tree which searches for a sequence

 $\langle \gamma_n, \beta_n, m_n \mid n < \omega \rangle$ such that

$$\bullet \kappa < \beta_n < \gamma_n < \kappa^+,$$

$$L_{\gamma_n}(\mathbb{R}^+) \models ``\kappa^+ \text{ exists"},$$

イロト イポト イヨト イヨト

э

Let
$$\mathbb{R}^+ = \bigcup_{\beta < \kappa} \mathbb{R}^{L_{\alpha_1}[x_1, G_1 | \beta]}$$
.

Let *T* be the tree which searches for a sequence $\langle \gamma_n, \beta_n, m_n \mid n < \omega \rangle$ such that

$$\bullet \ \kappa < \beta_n < \gamma_n < \kappa^+,$$

$$L_{\gamma_n}(\mathbb{R}^+) \models ``\kappa^+ \text{ exists"},$$

• there is a Σ_1 -elementary embedding

 $\pi: L_{\gamma_n}(\mathbb{R}^+) \to L_{\gamma_{n+1}}(\mathbb{R}^+)$ such that $\pi \upharpoonright (\kappa^+)^{L_{\gamma_n}(\mathbb{R}^+)} = \mathrm{id}$,

Let
$$\mathbb{R}^+ = \bigcup_{\beta < \kappa} \mathbb{R}^{L_{\alpha_1}[x_1, G_1 | \beta]}$$
.

Let *T* be the tree which searches for a sequence $\langle \gamma_n, \beta_n, m_n \mid n < \omega \rangle$ such that

$$\bullet \ \kappa < \beta_n < \gamma_n < \kappa^+,$$

$$L_{\gamma_n}(\mathbb{R}^+) \models ``\kappa^+ \text{ exists"},$$

• there is a Σ_1 -elementary embedding

 $\pi: L_{\gamma_n}(\mathbb{R}^+) \to L_{\gamma_{n+1}}(\mathbb{R}^+)$ such that $\pi \upharpoonright (\kappa^+)^{L_{\gamma_n}(\mathbb{R}^+)} = \mathrm{id}$,

• if
$$m_n = 0$$
, then $\pi(\beta_n) > \beta_{n+1}$, and if $m_n > 0$, then $\pi(\beta_n) = \beta_{n+1}$ and $m_{n+1} = m_n - 1$.

Lemma

Let $b = \langle \gamma_n, \beta_n, m_n \rangle_{n < \omega}$ be the left-most branch of T. Let M_b be the direct limit given by b. Then

- M_b is ill-founded with $wfc(M_b) = L_{\alpha_1}(\mathbb{R}^+)$,
- $\sup\{\gamma_n \mid n < \omega\} = \kappa^+$, and
- for every $n < \omega$, $\{(\gamma_n, \beta_n, m_n)\}$ is $\Sigma_1 \wedge \Pi_1$ -definable over any *x*-weasel *N*.

Generalizing to Σ_n -KP for $n \ge 1$.

Jan Kruschewski HOD Analysis for Admissible Structures

・ロト ・聞 ト ・ ヨト ・ ヨトー

3

Let $\mathcal{M}_n^{\mathrm{ad}}$ be the least mouse which models

- Σ_n -KP,
- V = L[E],
- there is a Woodin cardinal δ , and
- there is an inaccessible κ such that $\delta < \kappa$ and κ^+ exists.

Let $x_n \in \mathbb{R}$ be such that $x_n \leq_T \mathcal{M}_n^{\text{ad}}$ and let α_n be the least β such that

 $L_{\beta}[x] \models \Sigma_n$ -KP + $\exists \kappa (``\kappa \text{ is inaccessible}'' \land ``\kappa^+ \text{ exists}'').$

Let $G_n \subset \text{Col}(\omega, < \kappa_n)$ be $L_{\alpha_n}[x_n]$ -generic, where κ_n is the inaccessible of $L_{\alpha_n}[x_n]$.

Let Σ_n -OD be the set of all elements of $L_{\alpha_n}[x_n, G_n]$ which are ordinal-definable over $L_{\alpha_n}[x_n, G_n]$ via a Σ_n -formula. Let Σ_n -HOD be the set of all $a \in L_{\alpha_n}[x_n, G_n]$ such that $tc(a) \subset \Sigma_n$ -OD.

Theorem (K., Schlutzenberg)

Suppose that there is a Woodin cardinal. Let $n \ge 1$. Then

•
$$\Sigma_n$$
-HOD = $M_\infty[\Lambda_n]$,

2
$$\Sigma_n$$
-HOD $\models \Sigma_n$ -KP + $\exists \delta(``\delta is Woodin"),$

3
$$\Sigma_n$$
-HOD is a forcing ground of $L_{\alpha_n}[x_n, G_n]$.

イロト イ理ト イヨト イヨト

э

Thank you!

Jan Kruschewski HOD Analysis for Admissible Structures

ヘロト 人間 とくほとく ほとう

3