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What is a hod mouse

1. Hod mice are used to represent HOD of determinacy
models as fine structural objects.

2. They have been used to solve old problems asked by the
Cabal group (e.g. HODL(Γ,R) ⊨ GCH).

3. They have also been used in Core Model Induction to
calculate lower bounds of consistency strength.

Theorem (Woodin, Adolf-S.-Trang-Zeman-Wilson)
The following theories are equiconsistent.

1. CH + “there is an ω1-dense ideal on ω1”.
2. ZF + ADR + “Θ is a regular cardinal”.
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What is a hod mouse

1. A hod premouse is fine structural model of the form
P = L[E⃗ ,Σ].

2. Above, Σ is an iteration strategy of P internal to P.

3. The statement “I am a hod premouse” is a first order
statement, and it in particular implies that the universe is
iterable.

4. Hod mouse is an iterable hod premouse.
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What is a hod mouse

1. Historically, hod mice seemed to be technical objects
relevant exclusively to inner model theory.

2. The goal of the talk is to show that hod mice can be used
to prove theorems and state conjectures outside inner
model theory.

3. There will be four examples of set theoretic themes that
hod mice have something to say about.
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The cf(ΘuB) problem
1. uB is the set of all universally Baire sets of reals.

2. ΘuB is the supremum of all α such that there is a surjection
f : R → α with {(x , y) ∈ R2 : f (x) < f (y)} ∈ uB.

Problem
Assume proper class of Woodin cardinals.

1. Are there natural extensions of ZFC that decide the value
of ΘuB or cf(ΘuB)?

2. Does MM++ decide this value?

Theorem (Woodin)
Assume MM++ and a class of Woodin cardinals. Then uB is
definable over Hω3 .

Remark (Personal struggles)
If no natural extension of MM++ can decide cf(ΘuB), then this
would seem like a bad news for MM++.
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The cf(ΘuB) problem

Theorem (Woodin)
In the standard models of MM++, ΘuB < ω3. Thus, in these
models, cf(ΘuB) ∈ {ω1, ω2}



Sealing

Definition
uBg = (uB)V [g] and Rg = RV [g].

Definition
Sealing is the conjunction of the following clauses.

1. There is a class of Woodin cardinals.
2. L(uB,R) ⊨ AD+.
3. For all V -generic g and V [g]-generic h, there is

j : L(uBg ,Rg) → L(uBg∗h,Rg∗h)

such that for all A ∈ uBg , j(A) = Ah.

Remark
Sealing is the proper hypothesis for studying L(uB,R), and in
particular, the cf(ΘuB) problem.
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Sealing and the cf(ΘuB) problem

Theorem (Blue-S.-Viale)
Each of the following three theories are consistent.

1. Sealing+cf(ΘuB) = ω1.
2. Sealing+cf(ΘuB) = ω2.
3. Sealing+cf(ΘuB) = ω3.

Remark
Whether ΘL(R) > ω3 is possible is a well-known open problem.



Sealing+cf(ΘuB) = ω1 made precise

Definition
Sealing+cf(ΘuB) = ω1 is the following theory:

1. Sealing and cf(ΘuB) = ω1.
2. If g is a V -generic preserving ω1 and

j : L(uB,R) → L(uBg ,Rg)

is the Sealing embedding then j[uB] is Wadge cofinal in
uBg .



The models: cf(ΘuB) = ω1

Theorem (Blue-S.)
Suppose V is a hod premouse, there is a class of Woodin
cardinals and κ is a strong cardinal. Let λ be the least
inaccessible cardinal above κ, and let g ⊆ Coll(ω,< λ) be
V-generic. Then V [g] ⊨ “Sealing+cf(ΘuB) = ω1”.

Remark
The theorem is inspired by an argument of Woodin.
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Outline of the proof: cf(ΘuB) = ω1

1. (S.-Trang) V [g] ⊨ Sealing.

2. The rest is a least-disagreement-comparison argument.
The difficulty is to show that in all generic extensions
preserving ω1, old uB sets are Wadge cofinal in the new
ones.

3. The argument for this uses the fact that in V [g], V |λ is
universal (i.e. wins the comparison) with respect to
countable fully iterable lbr mice (in < ω1 = λ steps).

4. This type of comparisons cannot be done by comparing
with background constructions (i.e. via the method
developed by Steel in his book).
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The models: cf(ΘuB) = ω3

Theorem (Blue-S.-Viale)
Suppose V is a hod mouse, there are class of Woodin
cardinals and κ < λ are the first two strong cardinals. Let

1. M be the direct limit of all < λ-iterataes of V that are
obtained by iterating strictly above κ,

2. g ⊆ Coll(ω,< λ) be V-generic,
3. K = L(M,uBg ,Rg),
4. h ⊆ (Pmax ∗ Add(1, ω3))

K be K -generic.
Then K ⊨ ADR and

K [g ∗ h] ⊨ Sealing+ΘuB = ω3.



The models: cf(ΘuB) = ω2

1. Assuming class of Woodin cardinals, countably closed
posets do not create new uB sets. So this can be done by
forcing with Coll(ω2, ω3).

2. Alternatively, one can force over K with
Coll(ω1,R) ∗ Add(1, ω2).

This will force Sealing+ΘuB = ω2.
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cf(ΘuB) problem with MM

Conjecture
The theories MM+++Sealing+cf(ΘuB) = ω1, ω2, ω3 + “any
large cardinal” are consistent.



Berkeley cardinals

Definition (Bagaria-Koellner-Woodin)

1. κ is called a λ-Berkeley cardinal if for every transitive M of
size < λ and for every α < κ there is an elementary
embedding j : M → M with crit(j) > α.

2. κ is a Ord-Berkeley cardinal if for every λ, κ is a
λ-Berkeley cardinal.

3. κ is a HOD-Berkeley cardinal if clause 1 above holds for all
M ∈ HOD.

Theorem (Bagaria-Koellner-Woodin, ZFC)
If there is a HOD-Berkeley cardinal then the HOD Conjecture
fails.
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Berkeley cardinals under AD

Theorem (Solovay)
Assume AD. Then ω1 is ω2-Berkeley

(because every subset of
ω1 is constructible from a real and every real has a sharp).

Theorem (Blue-S.)
Assume AD+. Then ω1 is Θ-Berkeley. In fact, ω1 is club
Θ-Berkeley (i.e. the set of critical points is a club subset of ω1).

Theorem (Blue-S.)
Assume AD+. Then every regular Suslin cardinal is an ω-club
Θ-Berkeley cardinal.

Conjecture (with Goldberg)
Assume AD+. Then Θ is a limit of Θ-Berkeley cardinals.
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Berkeley cardinals under AD, the key idea of the proof

1. Suppose (P,Σ) is a mouse pair, κ is the least measurable
cardinal of P and E is the total extender in P whose critical
point is κ.

2. Let Q = Ult(P,E) and Λ = ΣQ.
3. Let M∞(P,Σ, κ) be the direct limit of all countable iterates

of (P,Σ) that are above κ.Similarly, define
M∞(Q,Λ, πµ(κ)).

4. Then πµ : P → Q generates an embedding
k : M∞(P,Σ, κ) → M∞(Q,Λ, πµ(κ)).

5. The proof uses Siskind-Schlutzenberg-Steel’s full
normalization technique.
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Berkeley cardinals in ZFC

Corollary
Assume AD in L(R). Then in L(R)Pmax , ω1 is ω3-Berkeley for
every M that is ordinal definable from a real.



Berkeley cardinals

Conjecture
The theory AD+ + “ω1 is an Ord-Berkeley cardinal” is
consistent relative to large cardinals.

Question
Is it possible to force over a model of AD+ to obtain a model of
ZFC+“ω1 is HOD-Berkeley”?
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Forcing instances of MM++ over determinacy

Assume ADR.
1. For an ordinal γ < Θ, the Nairian Models at γ are the

models where Xγ = ∪β<γ(HOD|β)ω.
1.1 N−

γ = Lγ(Xγ),

1.2 Nγ = L(Xγ),
1.3 N+

γ = HODXγ
.

2. We say γ is a stable point if letting κ = ΘN+
γ ,

2.1 N+
γ ⊨ ADR ,

2.2 P(R) ∩ N+
γ = P(R) ∩ N−

κ .
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γ ,

2.1 N+
γ ⊨ ADR ,

2.2 P(R) ∩ N+
γ = P(R) ∩ N−

κ .



Nairian Models

Definition
We say κ is a Solovay cardinal if for every ν < κ there is no OD
surjection f : P(ν) → κ.

Theorem (Steel)
Assume AD+ + HPC + V = L(P(R)). Suppose δ is a Solovay
cardinal such that there is a largest Solovay cardinal < δ and δ
is a limit of Woodin cardinals in HOD. Then δ is a stable point.

Theorem (Woodin)
In the above scenario, N−

δ ⊨ ZF.



Nairian Models

We let HYPO(η, δ, ξ) be the following statement:
1. V is a hod mouse,

2. η is an inaccessible limit of Woodin cardinals,
3. δ is a Woodin cardinal such that no δ′ < δ is strong pass δ,
4. ξ is either a < δ-strong cardinal or a limit of < δ-strong

cardinals,
5. ξ is a limit of Woodin cardinals,
6. no ξ′ ≤ ξ is a measurable limit of < δ-strong cardinals.
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3. δ is a Woodin cardinal such that no δ′ < δ is strong pass δ,
4. ξ is either a < δ-strong cardinal or a limit of < δ-strong
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5. ξ is a limit of Woodin cardinals,
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Nairian Models

Theorem (Blue-Larson-S.)
Assume HYPO(η, δ, ξ). Let g ⊆ Coll(ω,< η) be generic and
M = L(uBg ,Rg). Let H be the direct limit of all < η-iterates of
V |η and let π : V → H be the iteration embedding. Then in M,

1. π(ξ) is a stable point and
2. if ξ is an inaccessible limit of < δ-strong cardinal then

N−
π(ξ) ⊨ ZF + “ω1 is supercompact”.



Nairian Models

Theorem
The statement ∃η, δ, ξ(HYPO(η, δ, ξ) + “ξ is an inaccessible
limit of < δ-strong cardinals”) is consistency wise weaker than a
Woodin cardinal that is a limit of Woodin cardinals.

Corollary
The theory ADR + “Θ is a regular cardinal” + “ω1 is
supercompact” is weaker than a Woodin cardinal that is a limit
of Woodin cardinals.



Forcing over Nairian Models

Theorem
Assume HYPO(η, δ, ξ) and suppose ξ is the n + 1st < δ-strong
cardinal. Let π : V → H be as before and let κi for i ≤ n be the
first n + 1 < δ-strong cardinals of H (thus, π(ξ) = κn). Let
g ⊆ Coll(ω,< η) be generic and set M = L(uBg ,Rg). Then in
M,

1. κ0 = ΘNξ ,
2. for every i ≤ n − 1, κi+1 = (κ+i )

Nξ ,
3. if P = Pmax ∗ Add(1, κ0) ∗ Add(1, κ1) ∗ ... ∗ Add(1, κn) and

h ⊆ P is Nξ-generic then
Nξ[h] ⊨ ZFC + MM++(c) + ∀i ∈ [0,n](¬□(ω2+i) + ¬□ω2+i )



Nairian Models: the first challenge

Question
Assume HYPO(η, δ, ξ) and suppose ξ is the ω + 1st < δ-strong
cardinal. Can one force ¬□ℵω over Nπ(ξ)?

Can ¬□ℵω be forced
over any Nairian Model?
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Nairian Models: the second challenge

Corollary
For each n < ω, the theory ∀i ∈ [0,n](¬□(ω2+i) + ¬□ω2+i ) is
weaker than a Woodin cardinal that is a limit of Woodin
cardinals.

Question (Challenge)
Assume ZFC and suppose there is a superstrong cardinal. Fix
n ∈ ω. Is there a forcing extension satisfying
∀i ∈ [0,n](¬□(ω2+i) + ¬□ω2+i )?



Nairian Models: the third challenge

Question
Is there a Nairian Model in which ω1 is Ord-Berkeley?



Forcing over Nairian Models: non-convergence of K c

It follows from the results of the previous slides and a theorem
of Jensen-Schimmerling-Schindler-Steel that:

Corollary
It is not provable in ZFC that the K c constructions with
2ω-complete background certificates converge.



Towards more ideals

Theorem (Woodin)
Assume ADR + “Θ is regular” + V = L(P(R)). Let
g ⊆ Coll(ω1,R) ∗ Add(1, ω2) be generic. Then

V [g] ⊨ CH + “there is an ω1-dense ideal on ω1”.

Remark
Assume ADR + “Θ is regular” + V = L(P(R)) and let µ be the
supercompactness measure on Pω1(R). Then πµ(ω1) = Θ! This
is a key step in Woodin’s proof. In fact, the generic embedding
by the dense ideal extends πµ.
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Towards more ideals

1. Assume HYPO(η, δ, ξ) and suppose ξ is the second
< δ-strong cardinal.

2. Let H, π,g,M be defined as before.

3. Set λ = π(ξ) and let N = Nλ.

Theorem (Blue-Kasum-S.)
Nλ ⊨ AD2. In particular, letting κ = ΘNλ , uniformization holds in
Nλ for A ⊆ (κω)2.

Remark
AD2 is an abstract determinacy like theory for κω. It was
isolated by Steel. See the problem list of IMT 2023, Irvine.
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Towards more ideals

Continuing with the set up of the previous slide, the following
can be established.

Theorem
Let µ be the ω1-supercompactness measure on Pω1(κ). Then
πµ(ω1) = λ.

Question
What sort of ideal does µ from the above theorem generate in
the Coll(ω1,R) ∗ Add(1, ω2) ∗ Add(1, ω3)-extension of Nλ?
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