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C (L∗)

• Informal definition: The inner model C (L∗) arises from
Gödel’s L by replacing first order logic Lωω by an extension L∗
of Lωω.

• Some logics L∗ have absolute syntax: Higher order logics,
logics with generalized quantifiers.

• Some logics L∗ have absolute semantics: L∞ω, L∞G .

• Some have neither: Lκλ.
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Possible desirable attributes of inner models

• Forcing absolute.

• Support large cardinals.

• Arise “naturally”.

• Decide questions such as CH.

• Satisfy Axiom of Choice.
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• C (Lωω) = L

• C (Lω1ω) = L(R)

• C (Lω1ω1) = Chang model, (Chang PSPM 1971)

• C (L2) = HOD, (Myhill-Scott PSPM 1971)
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Theorem (Gloede 1978, KMV 2021)

Suppose L∗ and its syntax are ZFC-absolute with parameters from
L. Then C (L∗) = L.

Corollary

1. C (LA) = L for the smallest admissible set A containing ω.
(Gloede)

2. C (L(Qα)) = L for all α.
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Definition
Magidor-Malitz quantifier of dimension n:

M |= QMM,n
α x1, ..., xnϕ(x1, ..., xn) ⇐⇒

∃X ⊆ M(|X | ≥ ℵα ∧ ∀a1, ..., an ∈ X :M |= ϕ(a1, ..., an)).

L(QMM,n
0 ) is absolute but L(QMM,2

1 ) can express Souslinity of a tree.
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Consistently, C (QMM,2
1 ) 6= L, but:

Theorem
If 0] exists, then C (QMM,<ω

α ) = L.

Lemma
Suppose 0] exists and A ∈ L, A ⊆ [α]2. If there is (in V ) an
uncountable B such that [B]2 ⊆ A, then there is such a set B in L.

Definition
A logic L∗ is L-tame, if C (L∗) = L.

Can we characterize L-tame logics? Does L-tameness have model
theoretic content?
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Definition of C (L∗)

For any logic L∗ we define the truth definition and the hierarchy
(J ′α), α ∈ Lim, as follows:

Tr = {(α,ϕ(a)) : (J ′α,∈,Tr �α) |= ϕ(a), ϕ(x̄) ∈ L∗, a ∈ J ′α, α ∈ Lim},

where
Tr �α = {(β, ψ(a)) ∈ Tr : β ∈ α ∩ Lim},

and
J ′0 = ∅
J ′α+ω = rudTr (J ′α ∪ {J ′α})
J ′ων =

⋃
α<ν J

′
ωα, for ν ∈ Lim

C (L∗) =
⋃
α=∪α J

′
α.
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Another definition of C (L∗)


L′0 = ∅
L′ν =

⋃
α<ν L

′
α for limit ν

L′α+1 = DefL∗(L
′
α)

Co(L∗)1 =
⋃
α L
′
α.

For most (but consistently not all) logics the two definitions agree.

Theorem
For any L∗ the classes C (L∗) and Co(L∗) are transitive models of
ZF containing all the ordinals. If the syntax of L∗ is KP-absolute,
then C (L∗) |= AC.

1“o” for “original”. Gabe Goldberg pointed out that with the original
definition there was a problem with AC.
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Definition
A logic L∗ is adequate to truth in itself if for all finite vocabularies
K there is function ϕ 7→ pϕq from all formulas ϕ(x1, . . . , xn) ∈ L∗
in the vocabulary K into ω, and a formula SatL∗(x , y , z) in L∗
such that:

1. The function ϕ 7→ pϕq is one to one and has a recursive
range.

2. For all admissible sets M, formulas ϕ of L∗ in the vocabulary
K , structures N ∈ M in the vocabulary K , and
a1, . . . , an ∈ N the following conditions are equivalent:

2.1 M |= SatL∗(N , pϕq, 〈a1, . . . , an〉)
2.2 N |= ϕ(a1, . . . , an).

We may admit ordinal parameters in this definition.

Note: The L-tame logic L(Q0,Q1, ...) is not adequate to truth in
itself.
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Lemma
If L∗ is adequate to truth in itself, there are formulas ΦL∗(x) and
ΨL∗(x , y) of L∗ in the vocabulary {∈} such that if M is an
admissible set and α = M ∩On, then for the Co(L∗) hierarchy
level (L′α):

1. {a ∈ M : (M,∈) |= ΦL∗(a)} = L′α ∩M.

2. {(a, b) ∈ M ×M : (M,∈) |= ΨL∗(a, b)} is a well-order <′α the
field of which is L′α ∩M.

Theorem
If L∗ is adequate to truth in itself, then Co(L∗) satisfies the Axiom
of Choice.

We give an example of a logic L∗ for which AC may consistently
fail in Co(L∗).
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A failure of AC in Co(L∗)

Consider the quantifier

M |= QST
n xyzϕ(x , ~a)ψ(y , z , ~a) ⇐⇒ ψ(·, ·, ~a) has order-type ℵn+1

and ϕ(·, ~a) is a stationary set of points
of cofinality ℵn in ψ(·, ·, ~a).

We let L∗ be the extension of first order logic by the infinitely
many quantifiers QST

n , n < ω.

Proposition

Relative to the consistency of ZF, it is consistent that the Axiom of
Choice fails in the inner model Co(L∗) (whence Co(L∗) 6= C (L∗)).
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Measuring the strengths of logics

• L∗ ≤ L+ if L∗ ⊆ L+.

• L∗ ≤′ L+ if C (L∗) ⊆ C (L+).

• E.g. L(I ) where I is the Härtig quantifier

Ixyϕ(x , ~z)ψ(y , ~z) ⇐⇒ |ϕ(·, ~z)| = |ψ(·, ~z)|.

seems quite strong2 but C (I ) (=def C (L(I )) is relatively weak3.

• A set theoretic perspective to the strength of logics.

• C (I ) is a perfect hit with the extender model approach.
(Welch 2022)

2
∆(L(I )) = ∆(L2), if V=L (V. 1978), where ∆(L∗) is the unique smallest extension of L∗ to a logic with

the Souslin-Kleene Interpolation property. Even if V=L[E] has no inner model with a Woodin (V. & Welch 2023).
3

0k /∈ C(I ) (Welch 2022). 0k is the sharp of an inner model of a proper class of measurables.
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Recall:
HOD = C (L2).

NOTE: L2 is maximal under the inner model order ≤′ of logics
with finite syntax.
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Let
HOD1 =df C (Σ1

1).

Lemma

1. C (QMM,<ω
1 ) ⊆ HOD1

2. C (I ) ⊆ HOD1.

3. C (L(H)) = HOD1, where H is the Henkin quantifier(
∀x ∃y
∀u ∃v

)
ϕ(x , y , u, v , ~z).

15 / 41



Theorem
It is consistent, relative to the consistency of infinitely many
weakly compact cardinals that for some λ:

{κ < λ : κ weakly compact (in V )} /∈ HOD1.

Corollary

C (∆(L∗)) need not be the same as C (L∗).

Proof.
In the above model and with L∗ = L(H):
C (∆(L(H))) = C (∆(L2)) = HOD 6= HOD1 = C (L(H)).
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Definition
The cofinality quantifier Qcf

ω is defined as follows:

M |= Qcf
ω xyϕ(x , y , ~a) ⇐⇒ {(c , d) :M |= ϕ(c , d , ~a)}

is a linear order of cofinality ω.

• Axiomatizable

• Fully compact

• Downward Löwenheim-Skolem down to ℵ1
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Definition

C ∗ =def C (L(Qcf
ω ))

Theorem
If 0] exists, then 0] ∈ C ∗. More generally, x ] ∈ C ∗ for any x ∈ C ∗

such that x ] exists.

Proof.
Let X = {ξ < ℵω : ξ is a regular cardinal in L and cf(ξ) > ω}. Now
X ∈ C∗ and X consists of indiscernibles. Hence

0] = {pϕ(~x)q : Lℵω |= ϕ(γ1, ..., γn) for some γ1 < ... < γn in X} ∈ C∗.

Welch JSL 2022 proves the stronger result 0k ∈ C ∗ (assuming 0k

exists). More is known today, see Ralf’s lecture today.

18 / 41



It is not known whether there can be a measurable cardinal in C ∗

Theorem
• If there is a measurable cardinal κ, then V 6= C ∗.

• If E is an infinite set of MC (in V ), then E /∈ C ∗.

• If there is an Lµ, then some Lµ is contained in C ∗.

• If there is a Woodin cardinal, then ω1 is (strongly) Mahlo in
C ∗. WC?

• Suppose there is a Woodin cardinal λ. Then every regular
cardinal κ such that ω1 < κ < λ is weakly compact in C ∗.

• If there is a proper class of Woodin cardinals, then the regular
cardinals ≥ ℵ2 are indiscernible in C ∗.

• If V = Lµ, then C ∗ is the inner model Mω2 [E ], where
E = {κω·n : n < ω}4.

4This has been generalized to inner models for short sequences of measures.
(Ya’ar 2021, Welch 2022)
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Theorem
Suppose there is a proper class of Woodin cardinals. Suppose P is
a forcing notion and G ⊆ P is generic. Then

Th((C ∗)V ) = Th((C ∗)V [G ]).

Proof.
Let H1 be generic for Q. Now

j1 : (C∗)V → (C∗)M1 = (C∗)V [H1] = (C∗<λ)V .

Let H2 be generic for Q over V [G ]. Then

j2 : (C∗)V [G ] → (C∗)M2 = (C∗)V [H2] = (C∗<λ)V [G ] = (C∗<λ)V .
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Theorem
• |P(ω) ∩ C ∗| ≤ ℵ2.

• If there are three Woodin cardinals and a measurable cardinal
above them, then there is a cone of reals x such that C ∗(x)
satisfies the Continuum Hypothesis.

• It is consistent, relative to the consistency of an inaccessible
cardinal, that V = C ∗ and 2ℵ0 = ℵ2.

• Open: Do large cardinals imply C ∗ |= CH?
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Stationary logic L(aa)

• M |= aasϕ(s, a) ⇐⇒ {A ∈ Pω1(M) : M |= ϕ(A, a)}
contains a club of countable subsets of M.

• L(Q1) ⊆ L(aa).

• L(Qcof
ω ) ⊆ L(aa).

• It is not known whether L(aa) is adequate to truth in itself.

• It is not known whether Co(aa) satisfies AC.
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An important property of C (aa): Club Determinacy

• For all α:

(J ′α,Tr �α) |= ∀x̄ [aasϕ(x̄ , t̄, s) ∨ aas¬ϕ(x̄ , t̄, s)],

where ϕ(x̄ , t̄, s) is any formula in L(aa) and t̄ is a finite
sequence of countable subsets of J ′α.

• CD follows from a proper class of Woodin cardinals5.

• Technical lemma: Suppose that λ is Woodin and G is Q<λ
generic over V . If S ⊆ λ and S ∈ V is stationary in V then S
is stationary in V [G ].

• CD follows from PFA.

5Idea: After some preliminary steps we still have a Woodin cardinal δ and a

measurable above. Now we use stationary tower forcing and j : V → M. We compare

C(aaδ)V , C(aa)M , level by level, and show, using the below technical lemma, that

they are the same model. As we do this, we establish Club Determinacy in V .
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Theorem
• Assuming Club Determinacy, every regular κ ≥ ℵ1 is

measurable in C (aa).

• Suppose there are a proper class of Woodin cardinals. Then
the first order theory of C (aa) is (set) forcing absolute6.

6
Suppose P is a forcing notion and δ a Woodin cardinal > |P|. Let j : V → M be the (generic) associated

elementary embedding. Now C(aa) ≡ (C(aa))M = C(aaδ). Let H ⊆ P be generic over V and j′ : V [H]→ M′.

Again: (C(aa))V [H] ≡ (C(aa))M
′

= (C(aaδ))V [H]. But (C(aaδ))V [H] = C(aaδ), since |P| < δ.
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We fix the following notation: τξ = {R∈,RT ,RT∗} ∪ {Pη : η < ξ},
τ−ξ = τξ \ {RT∗}. Here R∈ and RT are binary and RT∗ ,Pη (η < ξ),
are unary. We use (P)ξ to denote a sequence 〈Pη : η < ξ〉.
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An aa-premouse is a structure JT
α = (JTα ,∈,T ,T ∗, (P)ξ) in the

vocabulary τξ such that

(1) T ⊆ α× (L(aa)× JTα ), and for all β < α, the set

Tβ = {ϕ(a) : (β, ϕ(a)) ∈ T , a ∈ JTβ }

is a complete consistent L(aa)-theory in the vocabulary τ−0
extending the first order theory of (JTβ ,∈,T �β), where we allow

constants ca for a ∈ JTβ .

(2) T ∗ is a complete consistent L(aa)-theory in the vocabulary τ−ξ
extending the first order theory of (JTα ,∈,T , (P)ξ) with constants
ca for a ∈ JTα .

(3) 〈Pη : η < ξ〉 is a continuously increasing sequence of subsets of JTα
and aas∀x(Pη(x)→ x ∈ s) ∈ T ∗, if η < ξ.

(4) If ∃xϕ(x , a) ∈ T ∗, then there is b ∈ JTα such that ϕ(cb, a) ∈ T ∗,
whenever ϕ(~x) is an L(aa)-formula in the vocabulary τ−ξ and

a ∈ JTα .
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(5) The sentence

aa s̄ ∃xϕ(x , ~s, a)→ aa s̄ ∃x(ϕ(x , ~s, a) ∧ ∀y ≺ x¬ϕ(y , ~s, a))

is in T ∗, whenever ϕ(x , ~s, y) is an L(aa)-formula in the vocabulary
τ−ξ and a ∈ JTα .

(6) The Club Determinacy schema

aat̄(aasϕ(a, s, t̄ ) ∨ aas¬ϕ(a, s, t̄ )), (1)

where ϕ(a, s, t̄) is in L(aa) in the vocabulary τ−ξ and a ∈ J ′α, is
contained in T ∗.

(7) The sentences aas∃x¬x ∈ s and aas (ω ⊆ s) are in T ∗.

(8) If β ∈ α ∩ Lim, ϕ(y) is an L(aa)-formula in the vocabulary τ−0 ,

b ∈ JT
β , and ϕ(b) ∈ Tβ , then ϕ(b)(JT

β ) ∈ T ∗.
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(9) If ϕ(s, x , y) is an L(aa)-formula in the vocabulary τ−ξ and a ∈ JTα
such that aas∃xϕ(s, x , a) ∈ T ∗, then
aas∃xϕ(s, x , a)→ aasϕ(s, fϕ(s,x,a)(s), a) is in T ∗. Here we use the
term fϕ(s,x,a)(s) to denote the ≺-minimal x intuitively satisfying
ϕ(s, x , a), i.e. we work in a conservative extension of T ∗, denoted
also T ∗, which contains:

aas∃xϕ(s, x , a)→ aas (ϕ(s, fϕ(s,x,a)(s), a)∧

∀z(z ≺ fϕ(s,x,a)(s)→ ¬ϕ(s, z , a))).
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Example

The canonical example of an aa-premouse is

N = (J ′α,∈,Tr �α,Trα),

where Trα = {ϕ(a) : (α,ϕ(a)) ∈ Tr . Note that N ∈ C (aa).
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Definition
Suppose JT

α = (JTα ,∈,T ,T ∗, (P)ξ) is an aa-premouse and
JS
β = (JSβ ,∈, S ,S∗, (P ′)ξ′) is an aa-premouse with ξ ≤ ξ′ and

α ≤ β. A mapping π : JTα → JSβ is called a weak elementary

embedding of JT
α into JS

β , in symbols

π : JT
α → JS

β ,

if π is a first order elementary embedding

(JTα ,∈,T , (P)ξ)→ (JSβ ,∈,S , (P ′)ξ′)�τ−ξ

and for all ϕ(x̄) ∈ L(aa) in the vocabulary τ−ξ and all a ∈ JTα ,

ϕ(a) ∈ T ∗ ⇐⇒ ϕ(π(a)) ∈ S∗.
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Suppose (JTα ,∈,T ,T ∗, (P)ξ) is an aa-premouse. We define

ϕ(s, x , a) ∼ ϕ′(s, x , a′)

if and only if

aas (fϕ(s,x ,a)(s) = fϕ′(s,x ,a′)(s)) ∈ T ∗.

The aa-ultrapower of (JTα ,∈,T ,T ∗, (P)ξ), has the set M∗ of
∼-equivalence classes as its domain. The canonical embedding
j : J ′α → M∗ is defined by j(a) = [x = a]. For predicates R we
define:

RM∗([ϕ1(s, x , a1)], . . . , [ϕn(s, x , an)]) ⇐⇒

aasR(fϕ1(s,x ,a1)(s), . . . , fϕn(s,x ,an)(s)) ∈ T ∗.
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Definition
Let P∗ be a new unary predicate symbol and
(P∗)M

∗
= {j(a) : a ∈ JTα }. We let S∗ consist of

ψ(P∗, [ϕ1(s, x , a)], . . . , [ϕn(s, x , a)]),

where ψ(s, x1, . . . , xn) is a τ -formula of L(aa), and

aasψ(s, fϕ1(s,x ,a)(s), . . . , fϕn(s,x ,a)(s)) ∈ T ∗.

Lemma
The aa-ultrapower (M,E , S , S∗, (P ′)ξ+1), if well-founded, collapses

to an aa-premouse (J T̄β ,∈, T̄ , T̄ ∗, (P̄)ξ+1) with vocabulary τξ+1.
The canonical mapping j, composed with the collapse function
π : (M,E )→ (J T̄β ,∈), is a weak elementary embedding

i : (JTα ,∈,T ,T ∗, (P)ξ)→ (J T̄β ,∈, T̄ , T̄ ∗, (P̄)ξ+1).
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Lemma
Suppose (JTα ,∈,T ,T ∗) is a countable premouse with vocabulary τ
and

π : (JTα ,∈,T ,T ∗)→ N

is an elementary embedding, where N is an expansion of
(J ′β,∈,Tr �β,Trβ) to a τ -structure. There are P+ ⊆ J ′β and an
elementary

π∗ : (M∗,∈M∗ ,TM∗ , S∗,P∗)→ (N,P+)

such that π∗(j(a)) = π(a) for all a ∈ M.
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• We obtain iterates (Mβ,Eβ,Tβ,T
∗
β , (P

β)β) of the
aa-premouse (M0,E0,T0,T

∗
0 , (P)0).

• An aa-premouse (M0,E0,T0,T
∗
0 , (P)0) is an aa-mouse if its

β’th iterate (Mβ,Tβ,T
∗
β , (P

β)β) is well-founded for all
β < ω1.

• In this case we say that the aa-premouse
(M0,E0,T0,T

∗
0 , (P)0) is iterable.
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Proposition

Let 〈(Mβ,Eβ,Tβ,T
∗
β , (P

β)β), jβ,γ : β ≤ γ ≤ ω1〉 be an aa-iteration
of aa-mice. Then for all formulas ϕ(a) of stationary logic in
vocabulary τ−ω1

and all a ∈ Mω1 :

ϕ(a) ∈ T ∗ω1
⇐⇒ (Mω1 ,Eω1 ,Tω1 , (P

ω1)ω1) |= ϕ(a).
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Lemma
Suppose

(M0,∈,T0,T
∗
0 , (P)0) ≺ (J ′ωα,∈,Tr�ωα,Trωα, (P ′)0),

where α is a limit ordinal and M0 is countable. Then Mω1 does not
have new reals over those in M0.

Theorem
If Club Determinacy holds, then CH holds in C (aa).
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Theorem
If club determinacy holds, there is a ∆1

3 well-ordering of the reals
in C (aa). The reals form a countable Σ1

3-set.

Proof.
The canonical well-order ≺ of C (aa) satisfies:

x ≺ y ⇐⇒ ∃z ⊆ ω( z codes an aa-mouse M such that

x , y ∈ M and M |= “x ≺ y”).

The right hand side of the equivalence is Σ1
3 and the claim

follows.
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The “plus” version of C (aa)

Definition
M |= aa+sϕ(s, a) ⇐⇒ {A ∈ Pω1(M) : (M,A)+ |= ϕ(A, a)}
contains a club of countable subsets of M.

Example

If (M,E ) is a well-founded extensional structure in C (aa+), then
the transitive collapse of (M,E ) is in C (aa+). It is not known if
the same is true of C (aa).

Proposition (Otto Rajala)

“All” that has been proved for C (aa) holds also for C (aa+).

NOTE: The “plus” makes sense also for other models C (L∗).
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Second order logic over countable subsets L2(ω)

• C 2(ω) =def C (L2(ω))

• L(Qcof
ω ) ≤ L2(ω), so C ∗ ⊆ C 2(ω) but consistently7

C (aa) 6⊆ C 2(ω). Also consistently8 C 2(ω) 6⊆ C (aa).

• ZFC ` C 2(ω) ⊆ HODCω1ω1 . Hence Th(C 2(ω)) is forcing
absolute, assuming a proper class of Woodin limits of
Woodins.

• V = C 2(ω) implies there are no measurable cardinals.

• ωV
1 is strongly Mahlo in C 2(ω), assuming a Woodin limit of

Woodins. WC?

7
Force over L a ∆1

3-non constructible real. That real is in C2(ω), but the forcing is CCC, so C(aa) = L.
8

Start with L. Add a Cohen real. Still C2(ω) = L as the forcing is homogeneous. Now code by further
forcing the Cohen real into stationarity of some stationary sets. The forcing does not add countable sets, so still
C2(ω) = L. But now the Cohen real is in C(aa).
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Recent developments

1. Assume a proper class of Woodin cardinals. The reals of
C (aa) (and also of C ∗) are in M1. C (aa) has no inner model
with a Woodin cardinal. (Magidor-Schindler)

2. Assume Club Determinacy. Then Ultrapower Axiom and GCH
hold in C (aa). (Goldberg-Steel)

3. Assume Club Determinacy. If κ is regular in C (aa) with
cof (κ) ≥ ωV

2 , then o(κ)C(aa) ≥ 2. Moreover, then
o(ωV

3 )C(aa) ≥ 3. (Goldberg-Rajala)

4. If V = Lµ, then V = C (aa). (SQuaRE)

5. There is ongoing investigation on what kind of mice can be
found inside models such as C ∗ and C (aa+). (SQuaRE)
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Thank you!
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