# Ladder mice Farmer Schlutzenberg, TU Wien

TU Wien, June 28, 2024

This research funded by the Austrian Science Fund (FWF) [grant Y 1498].

Will work in ZF + AD +  $V = L(\mathbb{R})$ .

#### **Definition 0.1.**

Given inner model M and complexity class  $\Gamma$ , M is  $\underline{\Gamma}$ -correct if

$$\mathbb{R} \cap M \models \varphi(\mathbf{x}) \iff \mathbb{R} \models \varphi(\mathbf{x}),$$

for all formulas  $\varphi \in \Gamma$  and  $x \in \mathbb{R} \cap M$ .

#### **Definition 0.2.**

For  $n < \omega$ ,  $\Delta_n^1(\omega_1)$  denotes the set of reals which are  $\underline{\Delta}_n^1$  in a countable ordinal:

$$x \in \Delta_n^1(\omega_1)$$

iff there is  $\xi < \omega_1$  and  $\Sigma_n^1$  formulas  $\varphi, \psi$  such that for all  $w \in WO_{\xi}$ , all  $n < \omega$ ,

$$n \in x \iff \varphi(w, n) \iff \neg \psi(w, n).$$

Equivalently, there is a  $\xi < \omega_1$  and a  $\Sigma_n^1$  formula  $\varphi$  such that for all  $y \in \mathbb{R}$ , we have

$$\mathbf{y} = \mathbf{x} \iff \varphi(\mathbf{w}, \mathbf{y}).$$

#### Theorem 0.3.

 $\mathbb{R} \cap L_{\omega_1^{ck}} = \Delta_1^1 \text{ (no ordinal parameters).}$  $L_{\omega_1^{ck}} \text{ is } \Sigma_0^1 \text{-correct but not } \Sigma_1^1 \text{-correct.}$ 

### Theorem 0.4.

 $\mathbb{R} \cap L = \Delta_2^1(\omega_1).$ L is  $\Sigma_2^1$ -correct but not  $\Sigma_3^1$ -correct.

The following results are due to Martin, Mitchell, Steel, Woodin (see [7]):

#### Theorem 0.5.

$$\begin{split} &\mathbb{R}\cap \textit{M}_1=\Delta_3^1(\omega_1).\\ &\textit{M}_1 \text{ is } \Sigma_2^1\text{-correct but not }\Sigma_3^1\text{-correct.} \end{split}$$

#### Theorem 0.6.

$$\begin{split} \mathbb{R} \cap M_2 &= \Delta_4^1(\omega_1). \\ M_2 \text{ is } \Sigma_4^1\text{-correct but not } \Sigma_5^1\text{-correct.} \end{split}$$

#### Theorem 0.7.

$$\begin{split} &\mathbb{R}\cap \textit{M}_3=\Delta_5^1(\omega_1).\\ &\textit{M}_3 \text{ is } \Sigma_4^1\text{-correct but not }\Sigma_5^1\text{-correct.} \end{split}$$

Etc through  $M_{2n}$ ,  $M_{2n+1}$ .

# Theorem 0.8 (Anti-correctness for $L_{\omega_1^{ck}}, \Pi_1^1$ ).

Let  $M = L_{\omega_4^{ck}}$ . Then we have:

- $(\Pi_1^1)^V \upharpoonright M \text{ is } (\Sigma_1^1)^M$  (Spector-Gandy)
- $(\Pi_1^1)^M$  is  $(\Sigma_1^1)^V \upharpoonright M$ ,

uniformly recursively so: there are recursive  $\varphi \mapsto \psi_{\varphi}$  and  $\varphi \mapsto \varrho_{\varphi}$  such that for all  $\varphi$  which are  $\Pi_1^1$  formulas,  $\psi_{\varphi}, \varrho_{\varphi}$  are  $\Sigma_1^1$  formulas, and for all  $x \in \mathbb{R} \cap M$ ,

$$V \models \varphi(\mathbf{x}) \iff \mathbf{M} \models \psi_{\varphi}(\mathbf{x}),$$

and

$$M\models \varphi(x) \iff V\models \varrho_{\varphi}(x).$$

(Ville?)

#### Theorem 0.9.

 $(\Sigma_3^1)^V \upharpoonright (\mathbb{R} \cap L)$  is not L-definable;

even

 $(\Sigma_3^1)^V \upharpoonright \omega$  is not L-definable.

In fact, there are  $\Delta_3^1$  reals which are not L (e.g.  $0^{\#}$ )

#### Theorem 0.10 (Anti-correctness for $M_1$ , $\Pi_3^1$ ).

We have:

• 
$$(\Pi_3^1)^V \upharpoonright M_1 \text{ is } (\Sigma_3^1)^{M_1}$$

•  $(\Pi_3^1)^{M_1}$  is  $(\Sigma_3^1)^V \upharpoonright M_1$ ,

uniformly recursively so.

(Woodin) (Martin-Mitchell-Steel)

Likewise for  $M_{2n}$ ,  $M_{2n+1}$  and  $\Pi_{2n+3}^1$ ,  $\Sigma_{2n+3}^1$ , for all n.

・ロト・日本・モート・モー・ショー・ショー・

# Definition 0.11.

The  $\underline{L(\mathbb{R})}$  language is language of set theory augmented with a constant  $\mathbb{R}$  for  $\mathbb{R}$ .

 $\Sigma_n^{\mathcal{J}_\alpha(\mathbb{R})}$  and  $\Pi_n^{\mathcal{J}_\alpha(\mathbb{R})}$  always in  $L(\mathbb{R})$  language.

# Definition 0.12.

For  $n \ge 1$ :

- $\Sigma_1^{\mathbb{R}}$  denotes  $\Sigma_1$ ,
- $\Pi_n^{\mathbb{R}}$  denotes  $\neg \Sigma_n^{\mathbb{R}}$ ,
- $\Sigma_{n+1}^{\mathbb{R}}$  denotes  $\exists^{\mathbb{R}}\Pi_{n}^{\mathbb{R}}$ .

#### Definition 0.13.

Let  $\alpha \in OR$  and  $n \geq 1$ .

 $OD_{\alpha n}$  denotes the set of  $x \in \mathbb{R}$  such that for some  $\xi < \omega_1$  and some  $\Sigma_n$  formula  $\varphi$ ,

$$\mathbf{y} = \mathbf{x} \iff \mathcal{J}_{\alpha}(\mathbb{R}) \models \varphi(\mathbf{w}, \mathbf{x})$$

for all  $w \in WO_{\xi}$  and all  $y \in \mathbb{R}$ .

Likewise  $OD_{\alpha n}^{\mathbb{R}}$ , but with  $\Sigma_n^{\mathbb{R}}$  replacing  $\Sigma_n$ .

so  $\Pi_1^{\mathbb{R}} = \Pi_1$ 

We will first consider the case  $\alpha = 1$ , so  $\mathcal{J}_{\alpha}(\mathbb{R}) = \mathcal{J}(\mathbb{R})$ .

# Remark 0.14. For $n \ge 1$ , $(\Sigma_n^{\mathbb{R}})^{\mathcal{J}(\mathbb{R})}$ is recursively equivalent to $\Sigma_n^{\mathcal{J}(\mathbb{R})}$ .

So for  $\alpha = 1$  case, will just write " $\Sigma_n$ " and " $\Pi_n$ ".

#### Corollary 0.15.

Let  $M_{<\omega} = \operatorname{stack}_{n<\omega} M_n^{\#}$ . We have:

- $OD_{11}^{\mathbb{R}} = OD_{11} = M_{<\omega} \cap \mathbb{R}.$
- $M_{<\omega}$  is projectively correct but not  $\Sigma_2^{\mathcal{J}(\mathbb{R})}$ -correct.

#### Theorem 0.16 (Woodin, [1]).

Let  $\lambda$  be a limit ordinal. Then  $OD_{\lambda 1} = \mathbb{R} \cap M$  for a mouse M.

#### Remark 0.17.

Rudominer [3] showed that  $OD_{\alpha n}^{\mathbb{R}} = \mathbb{R} \cap M$  for certain other  $(\alpha, n)$  with  $[\alpha, \alpha]$  projective-like:  $\alpha \leq \omega_1^{\omega_1}$  and either  $cof(\alpha) > \omega$  or  $[cof(\alpha) \leq \omega$  and n = 1].

#### Ladder mice:

# Definition 0.18.

<u>*M*-ladder</u> the least mouse *M* such that there is  $\langle \theta_n \rangle_{n < \omega}$  such that:

- $-\theta_n$  is an *M*-cardinal,
- $M_n^{\#}(M|\theta_n) \triangleleft M$  and  $M_n^{\#}(M|\theta_n) \models "\theta_n$  is Woodin".

Write  $M_{\rm ld} = M$ .

#### Remark 0.19.

- $M_{\rm ld} \models$  "there are no Woodin cardinals".
- $M_{\rm ld} \not\models \sf{ZFC}$ .

# Theorem 0.20 (Rudominer, Woodin).

 $\mathrm{OD}_{12}^{\mathbb{R}} = \mathrm{OD}_{12} = \mathbb{R} \cap M_{\mathrm{ld}}.$ 

#### Theorem 0.21 (S., [4]).

Assume ZF + AD + V =  $L(\mathbb{R})$ . Let  $\alpha$  with  $[\alpha, \alpha]$  a projective-like gap and either:

- $\alpha$  is a limit of countable cofinality, or
- $\alpha = \beta + 1$  where  $\beta$  does not end a strong gap.

Then:

- $\operatorname{OD}_{\alpha n} = \operatorname{OD}_{\alpha n}^{\mathbb{R}}.$
- There is a mouse M such that  $OD_{\alpha n} = \mathbb{R} \cap M$ .

#### Remark 0.22.

Rudominer [3] proved other instances, e.g. projective-like  $[\alpha, \alpha]$  where  $\alpha$  has uncountable cofinality.

Recall:

- $[\alpha, \beta]$  is a <u>gap</u> iff this interval is maximal such that  $\mathcal{J}_{\alpha}(\mathbb{R}) \preccurlyeq_{1} \mathcal{J}_{\beta}(\mathbb{R})$ .
- A gap  $[\alpha, \beta]$  is projective-like iff  $\mathcal{J}_{\alpha}(\mathbb{R}) \not\models \mathsf{KP}$ .
- The non-projectve-like gaps are divided into weak and strong.

#### Theorem 0.23 (?).

Assume  $ZF + AD + V = L(\mathbb{R})$ , and let  $[\alpha, \alpha]$  be as before. Then there is a real  $x_0$  such that for all reals x, there is an  $(x, x_0)$ -mouse  $M = M_{ld}^{\alpha}(x, x_0)$  analogous to  $M_{ld}$ , and there is  $\bar{\alpha}$  and a cofinal  $\Sigma_1$ -elementary

$$\sigma: \mathcal{J}_{\bar{\alpha}}(\mathbb{R}^{M}) \to \mathcal{J}_{\alpha}(\mathbb{R}),$$

such that:

- $\Pi_2^{\mathcal{J}_{\alpha}(\mathbb{R})}(\{x_0\})$  is  $\Sigma_2^{\mathcal{J}_{\bar{\alpha}}(\mathbb{R}^M)}(\{x_0\})$ ,
- $\Pi_2^{\mathcal{J}_{\bar{\alpha}}(\mathbb{R}^M)}(\{x_0\})$  is  $\Sigma_2^{\mathcal{J}_{\alpha}(\mathbb{R})}(\{x_0\})$ ,

uniformly recursively.

#### Remark 0.24.

(Maybe this follows from DST arguments already? But IMT proof should be new; [4].)

Ladder mice at end of weak/strong gaps (see paper):

# Theorem 0.25 (S., [4]).

Let  $[\alpha, \beta]$  be a weak gap, or  $\beta = \gamma + 1$  where  $\gamma$  ends a strong gap. Then for a cone of reals x, there is an x-mouse  $M_{ld}^{\beta}(x)$  definable from x over  $\mathcal{J}_{\beta}(\mathbb{R})$ , analogous to  $M_{ld}$  over  $\mathcal{J}(\mathbb{R})$ .

 $M_{\rm ld}^{\beta}(x)$  has infinitely many Woodins; a "ladder" ascends to its least Woodin.

#### Remark 0.26.

 $M_{\text{Id}}^{\beta}(x)$  is defined using earlier work of Steel, S., analysing  $\mathcal{J}_{\beta}(\mathbb{R})$  as a derived model [6].

 $\Pi_1^{\mathcal{J}(\mathbb{R})}$  assertions about reals are recursively equivalent to  $\bigwedge_{n<\omega} \Sigma_{2n}^1$ .

$$(\mathcal{J}(\mathbb{R})\models\varphi(\mathbf{x}))\iff \bigwedge_{n<\omega}\psi_{\varphi,n}(\mathbf{x}).$$

$$(\mathcal{J}(\mathbb{R})\models\varphi(\mathbf{x}))\iff \bigwedge_{n<\omega}\psi_{\varphi,n}(\mathbf{x}).$$

Likewise conversely,  $\vec{\psi} \mapsto \varphi_{\vec{\psi}}$ .

$$(\mathcal{J}(\mathbb{R})\models\varphi(\mathbf{x}))\iff \bigwedge_{n<\omega}\psi_{\varphi,n}(\mathbf{x}).$$

Likewise conversely,  $\vec{\psi} \mapsto \varphi_{\vec{\psi}}$ .

Let  $T_n$  be the canonical tree projecting to a universal  $\Sigma_{2n}^1$  set  $\subseteq \omega \times {}^{\omega}\omega \times {}^{\omega}\omega$ .

$$(\mathcal{J}(\mathbb{R})\models\varphi(\mathbf{x}))\iff \bigwedge_{\mathbf{n}<\omega}\psi_{\varphi,\mathbf{n}}(\mathbf{x}).$$

Likewise conversely,  $\vec{\psi} \mapsto \varphi_{\vec{\psi}}$ .

Let  $T_n$  be the canonical tree projecting to a universal  $\Sigma_{2n}^1$  set  $\subseteq \omega \times {}^{\omega}\omega \times {}^{\omega}\omega$ . For a  $\Pi_1$  formula  $\varphi(u, w)$  and the  $\Sigma_2$  formula

$$\varrho(\boldsymbol{u}) \iff \exists^{\mathbb{R}} \boldsymbol{w} \varphi(\boldsymbol{u}, \boldsymbol{w}),$$

let  $T_{\varrho}$  be the tree building  $(x, w, \vec{y})$  such that:

$$(\mathcal{J}(\mathbb{R})\models\varphi(\mathbf{x}))\iff \bigwedge_{\mathbf{n}<\omega}\psi_{\varphi,\mathbf{n}}(\mathbf{x}).$$

Likewise conversely,  $\vec{\psi} \mapsto \varphi_{\vec{\psi}}$ .

Let  $T_n$  be the canonical tree projecting to a universal  $\Sigma_{2n}^1$  set  $\subseteq \omega \times {}^{\omega}\omega \times {}^{\omega}\omega$ . For a  $\Pi_1$  formula  $\varphi(u, w)$  and the  $\Sigma_2$  formula

$$\varrho(\boldsymbol{u}) \iff \exists^{\mathbb{R}} \boldsymbol{w} \varphi(\boldsymbol{u}, \boldsymbol{w}),$$

let  $T_{\varrho}$  be the tree building  $(x, w, \vec{y})$  such that:

$$-x, w \in {}^{\omega}\omega,$$

- $\vec{y} : \omega \to OR$  is the interlacing of  $\langle y_n \rangle_{n < \omega}$  with  $y_n : \omega \to OR$  for each n,
- $-(\psi_{\varphi,n}, \mathbf{x}, \mathbf{w}, \mathbf{y}_n) \in [T_n]$  for all n,
- $-\vec{y} \upharpoonright n$  involves only entries from  $y_0, \ldots, y_{n-1}$ .

Then

$$\boldsymbol{\rho}[\boldsymbol{T}_{\varrho}] = \big\{ \boldsymbol{x} \mid \mathcal{J}(\mathbb{R}) \models \varrho(\boldsymbol{x}) \big\}.$$

Fix a  $\Pi_1$  formula  $\varphi(u, w)$  and the  $\Sigma_2$  formula

$$\varrho(\boldsymbol{u}) \iff \exists^{\mathbb{R}} \boldsymbol{w} \varphi(\boldsymbol{u}, \boldsymbol{w}).$$

Let N be a projectively correct model. Then

 $T_{\varrho}^{N}$  denotes [ $T_{\varrho}$  as computed in N].

Fix a  $\Pi_1$  formula  $\varphi(u, w)$  and the  $\Sigma_2$  formula

$$\varrho(\boldsymbol{u}) \iff \exists^{\mathbb{R}} \boldsymbol{w} \varphi(\boldsymbol{u}, \boldsymbol{w}).$$

Let *N* be a projectively correct model. Then

 $T_{\varrho}^{N}$  denotes [ $T_{\varrho}$  as computed in N].

If N' is projectively correct and  $\mathbb{R}^N \subseteq \mathbb{R}^{N'}$ , there is a natural embedding

$$\pi_{NN'}: T_{\varrho}^N \to T_{\varrho}^{N'}.$$

In particular,  $\pi_{NV}: T_{\varrho}^{N} \to T_{\varrho}$ , so  $p[T_{\varrho}^{N}] \subseteq p[T_{\varrho}]$ .

Consider  $N = M_{ld}$ . For reals  $x \in M_{ld}$ ,

 $(T_{\varrho}^{M_{\mathrm{ld}}})_{x}$  is illfounded  $\implies (T_{\varrho})_{x}$  is illfounded  $\implies \mathcal{J}(\mathbb{R}) \models \varrho(x).$ 

But the converse is not clear; maybe there are reals  $x \in M_{ld}$  such that

 $(T_{\varrho}^{M_{\rm ld}})_{x}$  is wellfounded

but

 $(T_{\varrho})_x$  is illfounded, so  $\mathcal{J}(\mathbb{R}) \models \varrho(x)$ .

#### Theorem 0.27 (Woodin, [2]).

There is  $\gamma < \omega_2^{M_{ld}}$  such that for all  $x \in M_{ld}$ , the following are equivalent:

- $-\mathcal{J}(\mathbb{R})\models\varrho(\mathbf{X})$
- $-(T_{\varrho})_x$  is illfounded
- $-(T_{\rho}^{M_{\text{ld}}})_{x}$  is illfounded or has rank  $\geq \gamma$ .

So  $M_{\rm id}$  knows  $\Sigma_2^{\mathcal{J}(\mathbb{R})}$  truth. Proof uses stationary tower forcing.

 $\text{Recall } \mathrm{OD}_{12} = \mathrm{OD}_{12}^{\mathbb{R}}.$ 

Theorem 0.28 (Rudominer, pprox 2000).

 $\mathbb{R} \cap M_{ld} \subseteq OD_{12}$ .

Theorem 0.29 (Woodin, 2018, [2]).

 $OD_{12} \subseteq \mathbb{R} \cap M_{Id}$ .

Theorem 0.30 (Rudominer, Woodin).

 $OD_{12} = \mathbb{R} \cap M_{ld}.$ 

#### Remark 0.31.

Steel showed that  $M_{\rm ld}$  can definably identify the parameter  $\gamma$ .

What about anti-correctness?

$$(M_{\mathrm{ld}}, \Pi_2^{\mathcal{J}(\mathbb{R})})$$

is analogous to  $(M_1^{\#}, \Pi_3^1)$  and to  $(L_{\omega_1^{ck}}, \Pi_1^1)$ .

Want recursive functions  $\varphi \mapsto \psi_{\varrho}$  and  $\varphi \mapsto \varrho_{\varphi}$  such that for all  $\Pi_2$  formulas  $\varphi$ ,  $\psi_{\varphi}$  and  $\varrho_{\varphi}$  are  $\Sigma_2$  and for all  $x \in \mathbb{R} \cap M_{\text{ld}}$ ,

$$\mathcal{J}(\mathbb{R}) \models \varphi(\mathbf{x}) \iff \mathcal{J}(\mathbb{R}^{M_{\mathrm{id}}}) \models \psi_{\varphi}(\mathbf{x})$$
(1)

and

$$\mathcal{J}(\mathbb{R}^{M_{\mathrm{id}}}) \models \varphi(\mathbf{x}) \iff \mathcal{J}(\mathbb{R}) \models \varrho_{\varphi}(\mathbf{x}).$$
(2)

For (2), use Rudominer's earlier work. For (1), need more. Recall for  $M_1$ , and  $\varphi$  is  $\Pi_3^1$ :

 $\mathbb{R}\models\varphi(\mathbf{X})\iff\mathbb{R}^{M_1}\models\psi_{\varphi}(\mathbf{X}),$ 

 $\psi_{\varphi}$  is  $\Sigma_3^1$ ,  $\psi_{\varphi}(x)$  says "there is a  $\Pi_2^1$ -iterable  $\varphi(x)$ -prewitness".

Definition 0.32.

Consider  $\Pi_3^1$  formula

 $\varphi(u) \iff \forall z \ \tau(u, z),$ 

where  $\tau$  is  $\Sigma_2^1$ .

Let  $x \in \mathbb{R}$ . A  $\varphi(x)$ -prewitness is a pair  $(N, \delta)$  such that:

- (i) N is a premouse,
- (ii)  $x \in N$ ,
- (iii)  $N \models \mathsf{ZF}^- + \delta$  is Woodin",
- (iv)  $N \models$  "it is forced by the extender algebra at  $\delta$  that  $\tau(x, \dot{z})$ , where  $\dot{z}$  is the generic real".

# Theorem 0.33 (Woodin).

For all  $x \in \mathbb{R} \cap M_1$  and  $\Pi_3^1$  formulas  $\varphi$ , the following are equivalent:

- $-\mathbb{R}\models \varphi(\mathbf{X})$ ,
- there is an iterable  $\varphi(x)$ -prewitness,
- there is a  $\Pi_2^1$ -iterable  $\varphi(x)$ -prewitness  $N \in \mathrm{HC}^{M_1}$ ,

$$- \mathbb{R}^{M_1} \models \psi_{\varphi}(\mathbf{X}).$$

We want, for  $\Pi_2$  formulas  $\varphi$ , a  $\Sigma_2$  formula  $\psi_{\varphi}$  such that:

$$\mathcal{J}(\mathbb{R})\models \varphi(\mathbf{X})\iff \mathcal{J}(\mathbb{R}^{M_{\mathrm{id}}})\models \psi_{\varphi}(\mathbf{X}).$$

 $\psi_{\varphi}(x)$  should say "there is a  $\Pi_1$ -iterable  $\varphi(x)$ -prewitness".



– Every  $\Pi_1$ -iterable premouse  $P \in HC^{M_{ld}}$  is iterable.

What is a  $\varphi(x)$ -prewitness (for  $\Pi_2$  formulas  $\varphi$ )?

- Analogue to  $\varphi(x)$ -prewitness for  $\Pi_3^1$  formulas  $\varphi$ ?
- Not enough Woodinness in segments of M<sub>id</sub> for a direct analogue...

### Definition 0.35.

An <u>*n*-partial ladder</u> is a premouse N such that for some  $\vec{\theta}$ ,

- $\vec{\theta} = \langle \theta_i \rangle_{i < n}$  is a strictly increasing (n + 1)-tuple of ordinals of N,
- $\theta_i$  is an *N*-cardinal for all  $i \leq n$ ,
- $\theta_n^{++N}$  is the largest cardinal of *N*,
- *N* is closed under  $M_k^{\#}$ , for each  $k < \omega$ ,

•  $M_i^{\#}(N|\theta_i)$  is the Q-structure for  $\theta_i$ , for each  $i \leq n$ , and  $\theta_i$  is the least such  $\theta$ . Write  $\vec{\theta}^N = \vec{\theta}$ .

#### Definition 0.36.

Fix  $\Sigma_2$  formula  $\varrho$ . Let  $N, \theta$  be such that  $N \models$  " $\theta$  is a cardinal and  $\theta^{++}$  exists" and N is  $M_k^{\#}$ -closed for all  $k < \omega$ . Write

$$\mathcal{S}_{ heta}^{\mathcal{N}}=\mathcal{T}_{arrho}^{\mathcal{N}[g]}$$

for *g* being  $(N, Col(\omega, \theta))$ -generic.

#### Definition 0.36.

Fix  $\Sigma_2$  formula  $\rho$ . Let  $N, \theta$  be such that  $N \models$  " $\theta$  is a cardinal and  $\theta^{++}$  exists" and N is  $M_k^{\#}$ -closed for all  $k < \omega$ . Write

$$S^{\mathcal{N}}_{ heta} = \mathit{T}^{\mathcal{N}[g]}_{arrho}$$

for *g* being  $(N, Col(\omega, \theta))$ -generic.

Given N',  $\theta'$  as above with  $\theta < \theta'$  and  $N|\theta^{+N} = N'|\theta^{+N'}$ , write

$$\pi_{\theta\theta'}^{NN'}: S_{\theta}^{N} \to S_{\theta'}^{N'}.$$

for the canonical embedding

$$\pi: T_{\varrho}^{\mathcal{N}[g]} \to T_{\varrho}^{\mathcal{N}'[g']},$$

where g, g' are as above with g' being  $(N[g], Col(\omega, \theta'))$ -generic.

# Fact 0.1 (Hjorth).

 $S_{\theta}^{N}, S_{\theta'}^{N'}, \pi_{\theta\theta'}^{NN'}$  are independent of g, g'; so they are in N'.

Let  $\varphi(x) = \neg \varrho(x)$  be  $\Pi_2$ . For a  $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse  $P_0$  with  $x \in P_0$ where player 2 wins the following game  $\mathscr{G}_x^{P_0}$ : Let  $\varphi(x) = \neg \varrho(x)$  be  $\Pi_2$ . For a  $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse  $P_0$  with  $x \in P_0$ where player 2 wins the following game  $\mathscr{G}_x^{P_0}$ :

0.1 Player 1 plays:

- A correct tree  $\mathcal{T}_0$  on  $P_0$ , based on  $P_0|\theta_0^{P_0}$ ; let  $P'_0 = M_{\infty}^{\mathcal{T}_0}$  and  $\theta'_0 = \theta_0^{P'_0}$ ,

$$(s_0, t_0) \in (S^{P'_0}_{\theta'_0})_{\varrho(x)}$$
 with  $\ln(s_0, t_0) = 1$ ,

Let  $\varphi(x) = \neg \varrho(x)$  be  $\Pi_2$ . For a  $\varphi(x)$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse  $P_0$  with  $x \in P_0$ where player 2 wins the following game  $\mathscr{G}_x^{P_0}$ :

0.1 Player 1 plays:

- A correct tree  $\mathcal{T}_0$  on  $P_0$ , based on  $P_0|\theta_0^{P_0}$ ; let  $P'_0 = M_\infty^{\mathcal{T}_0}$  and  $\theta'_0 = \theta_0^{P'_0}$ , -  $(s_0, t_0) \in (S_{\theta'_0}^{P'_0})_{\ell(x)}$  with  $\ln(s_0, t_0) = 1$ ,

0.2 Player 2 plays:

- A 1-partial ladder  $P_1$  such that  $P'_0|(\theta'_0)^{+P'_0} \triangleleft P_1 \triangleleft P'_0$ ,

Let  $\varphi(x) = \neg \varrho(x)$  be  $\Pi_2$ . For a  $\underline{\varphi(x)}$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse  $P_0$  with  $x \in P_0$ where player 2 wins the following game  $\mathscr{G}_x^{P_0}$ :

0.1 Player 1 plays:

- A correct tree  $\mathcal{T}_0$  on  $P_0$ , based on  $P_0|\theta_0^{P_0}$ ; let  $P'_0 = M_\infty^{\mathcal{T}_0}$  and  $\theta'_0 = \theta_0^{P'_0}$ , -  $(s_0, t_0) \in (S_{\theta'_0}^{P'_0})_{\varrho(x)}$  with  $\ln(s_0, t_0) = 1$ ,

0.2 Player 2 plays:

- A 1-partial ladder  $P_1$  such that  $P'_0|(\theta'_0)^{+P'_0} \triangleleft P_1 \triangleleft P'_0$ ,

- 1.1 Player 1 plays:
  - A correct tree  $\mathcal{T}_1$  on  $P_1$  which is above  $\theta'_0$  and based on  $P_1|\theta_1$ ; let  $P'_1 = M^{\mathcal{T}_1}_{\infty}$  and  $\theta'_1 = \theta^{P'_1}_1$ , -  $(s_1, t_1) \in (S^{P'_1}_{\theta'_1})_{\ell(x)}$  with  $\pi^{P'_0 P'_1}_{\theta'_0 \theta'_1}(s_0, t_0) \triangleleft (s_1, t_1)$  and  $\ln(s_1, t_1) = 2$ ,

Let  $\varphi(x) = \neg \varrho(x)$  be  $\Pi_2$ . For a  $\underline{\varphi(x)}$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse  $P_0$  with  $x \in P_0$ where player 2 wins the following game  $\mathscr{G}_x^{P_0}$ :

0.1 Player 1 plays:

- A correct tree  $\mathcal{T}_0$  on  $P_0$ , based on  $P_0|\theta_0^{P_0}$ ; let  $P'_0 = M_{\infty}^{\mathcal{T}_0}$  and  $\theta'_0 = \theta_0^{P'_0}$ , -  $(s_0, t_0) \in (S_{\theta'}^{P'_0})_{\rho(x)}$  with  $\ln(s_0, t_0) = 1$ ,

0.2 Player 2 plays:

- A 1-partial ladder  $P_1$  such that  $P'_0|(\theta'_0)^{+P'_0} \triangleleft P_1 \triangleleft P'_0$ ,

1.1 Player 1 plays:

- A correct tree  $\mathcal{T}_1$  on  $P_1$  which is above  $\theta'_0$  and based on  $P_1|\theta_1$ ; let  $P'_1 = M^{\mathcal{T}_1}_{\infty}$  and  $\theta'_1 = \theta^{P'_1}_1$ , -  $(s_1, t_1) \in (S^{P'_1}_{\theta'_1})_{\varrho(x)}$  with  $\pi^{P'_0P'_1}_{\theta'_0\theta'_1}(s_0, t_0) \triangleleft (s_1, t_1)$  and  $\ln(s_1, t_1) = 2$ ,

1.2 Player 2 plays:

- A 2-partial ladder  $P_2$  such that  $P'_1|(\theta'_1)^{+P'_1} \triangleleft P_2 \triangleleft P'_1$ ,

Let  $\varphi(x) = \neg \varrho(x)$  be  $\Pi_2$ . For a  $\underline{\varphi(x)}$ -witness, we want roughly:

- an (iterable) 0-partial ladder premouse  $P_0$  with  $x \in P_0$ where player 2 wins the following game  $\mathscr{G}_x^{P_0}$ :

0.1 Player 1 plays:

- A correct tree  $\mathcal{T}_0$  on  $P_0$ , based on  $P_0|\theta_0^{P_0}$ ; let  $P'_0 = M_\infty^{\mathcal{T}_0}$  and  $\theta'_0 = \theta_0^{P'_0}$ , -  $(s_0, t_0) \in (S_{\theta'_2}^{P'_0})_{\ell(x)}$  with  $\ln(s_0, t_0) = 1$ ,

0.2 Player 2 plays:

- A 1-partial ladder  $P_1$  such that  $P'_0|(\theta'_0)^{+P'_0} \triangleleft P_1 \triangleleft P'_0$ ,

1.1 Player 1 plays:

- A correct tree  $\mathcal{T}_1$  on  $P_1$  which is above  $\theta'_0$  and based on  $P_1|\theta_1$ ; let  $P'_1 = M^{\mathcal{T}_1}_{\infty}$  and  $\theta'_1 = \theta^{P'_1}_1$ , -  $(s_1, t_1) \in (S^{P'_1}_{\theta'_1})_{\varrho(x)}$  with  $\pi^{P'_0P'_1}_{\theta'_0\theta'_1}(s_0, t_0) \triangleleft (s_1, t_1)$  and  $\ln(s_1, t_1) = 2$ ,

1.2 Player 2 plays:

- A 2-partial ladder  $P_2$  such that  $P'_1|(\theta'_1)^{+P'_1} \triangleleft P_2 \triangleleft P'_1$ ,

2.1 etc,

2.2 etc...

The first player to break a rule loses; otherwise player 2 wins.

#### Lemma 0.37.

If  $P_0$  is iterable and player 2 has a winning strategy for  $\mathscr{G}_x^{P_0}$  then  $\mathcal{J}(\mathbb{R}) \models \varphi(x)$ .

#### Proof.

Suppose 
$$\mathcal{J}(\mathbb{R}) \models \neg \varphi(x)$$
, so  $\mathcal{J}(\mathbb{R}) \models \varrho(x)$ , i.e.

$$\mathcal{J}(\mathbb{R}) \models \exists^{\mathbb{R}} w \ \psi(w, x)$$

where  $\psi$  is  $\Pi_1$ . Let  $(w, \vec{y})$  be such that  $(x, w, \vec{y}) \in [T_{\varrho}^V]$ .

Let  $\vec{z} \in {}^{\omega}\mathbb{R}$  yield ranks of all ordinals in  $\vec{y}$ , w.r.t. the prewellorders of the scales.

Let  $\mathcal{T}_0$  on  $\mathcal{P}_0$  be the  $(w, \vec{z})$ -genericity iteration at  $\theta_0$ . Let  $\mathcal{P}'_0 = M^{\mathcal{T}_0}_{\infty}$ . Let

 $(s_0, \widetilde{t}_0) = (w, \vec{y}) \upharpoonright 1.$ 

Let  $(s_0, t_0)$  be such that whenever g is  $(P'_0, Col(\omega, \theta'_0))$ -generic,

$$\pi^{P_0'[g],V}(\boldsymbol{s}_0,t_0)=(\boldsymbol{s}_0,\widetilde{t}_0).$$

Let  $P_1 \triangleleft P'_0$  be played by player 2.

Iterate  $P_1$  above  $\theta'_0$ , to make  $(w, \vec{z})$  generic....etc. ...Tree on  $P_0$  with unbounded drops, contradiction.

### Definition 0.38 (Pseudo-definition).

Let  $P_0$  be a 0-partial ladder and  $x \in \mathbb{R}^{P_0}$ . Let  $\Delta_0 \in P_0$ . We say that  $(P_0, \Delta_0)$  is a  $\underline{\varphi(x)}$ -prewitness iff  $\Delta_0$  is a winning strategy in the game  $\mathscr{G}_x^{*(P_0,\Delta_0)}$ , which is played as is  $\mathscr{G}_x^{P_0}$ , except that:

- all trees  $T_n$  are trivial,
- Player 2 must play move (n + 1).2 according to  $\Delta_n$ ,
- At move (n + 1).2, player 2 must ensure that  $\Delta_{n+1} \in P_{n+1}$ , where

 $\Delta_{n+1}$  = tail strategy determined by  $\Delta_n$ ,  $s_n$ ,  $t_n$ .

(See paper for formal definition.)

#### Definition 0.39.

Let  $\langle \theta_n \rangle_{n < \omega}$  be the "rungs" of the ladder of  $M_{\rm ld}$ . Let

$$S^{M_{\mathrm{ld}}}_{\infty} = \mathrm{dirlim}_{n < \omega} S^{M_{\mathrm{ld}}}_{ heta_n}$$

under the maps  $\pi_{\theta_n\theta_m}^{M_{\text{ld}}}$ .

(Recall  $\varphi(u)$  is  $\Pi_2$  and  $\varrho(u) \iff \neg \varphi(u)$ .)

#### Lemma 0.40.

Let  $x \in \mathbb{R}^{M_{ld}}$ . The following are equivalent:

- $\mathcal{J}(\mathbb{R}) \models \varphi(\mathbf{X})$ ,
- $x \notin p[T_{\varrho}]$ ,
- $(T_{\varrho})_x$  is wellfounded,
- $x \notin p[S_{\infty}^{M_{\mathrm{ld}}}]$ ,
- $(S^{M_{\rm ld}}_{\infty})_{x}$  is wellfounded,
- there is a  $\varphi(x)$ -prewitness  $(P, \Delta)$  such that  $P \triangleleft M_{\text{ld}} | \omega_1^{M_{\text{ld}}}$ ,
- $M_{\text{ld}} \models$  "there is a  $\varphi(x)$ -prewitness  $(P, \Delta) \in \text{HC}$  such that P is  $\Pi_1$ -iterable".

(The last item gives  $\psi_{\varphi}(x)$ .)

#### Proof Sketch.

Suppose  $x \in M_{\text{ld}}$  but  $x \notin p[S_{\infty}^{M_{\text{ld}}}]$ , so  $(S_{\infty}^{M_{\text{ld}}})_x$  is wellfounded.

We want a  $\varphi(x)$ -prewitness  $P \triangleleft M_{\rm ld} | \omega_1^{M_{\rm ld}}$ .

Given *s*, *t* with  $\ln(s, t) = n$ , say  $(P, \Delta)$  is a  $(\varphi(x), s, t)$ -prewitness iff *P* is an *n*-partial ladder,  $(s, t) \in S^{P}_{\theta_{P}}$ , and player 2 wins from position  $(P, \Delta, s, t)$ .

Let

$$\pi_{ heta_n\infty}: S^{M_{ ext{ld}}}_{ heta_n} o S^{M_{ ext{ld}}}_{\infty}$$

be the direct limit map.

#### SUBCLAIM.

For each  $n < \omega$  and each  $(s, t) \in S_{\theta_n}^{M_{\text{ld}}}$  with  $\ln(s, t) = n$ , there is a  $(\varphi(x), s, t)$ -prewitness  $P \triangleleft M_{\text{ld}}$  with  $M_{\text{ld}} | \theta_n^{+M_{\text{ld}}} \triangleleft P$ .

#### Proof.

By induction on  $S_{\infty}^{M_{\text{Id}}}$ -rank of  $\pi_{\theta_n\infty}(s, t)$ , using condensation.

It follows that there is a  $(\varphi(x), \emptyset, \emptyset)$ -prewitness  $P \triangleleft M_{\text{ld}} | \omega_1^{M_{\text{ld}}}$ .

#### Theorem (S.).

Assume  $ZF + AD + V = L(\mathbb{R})$ . Let  $\alpha$  be such that  $[\alpha, \alpha]$  is a projective-like gap and either  $\alpha$  is a limit of countable cofinality, or  $\alpha = \beta + 1$  where  $\beta$  does not end a strong gap. Then:

$$- \operatorname{OD}_{\alpha n} = \operatorname{OD}_{\alpha n}^{\mathbb{R}}.$$

- There is a mouse M such that  $OD_{\alpha n} = \mathbb{R} \cap M$ .

#### Proof setup.

Consider n = 2. The foregoing adapts to  $\mathcal{J}_{\alpha}(\mathbb{R})$  on a certain cone of x, giving

$$\mathrm{OD}_{lpha 2}(x) = \mathrm{OD}_{lpha 2}^{\mathbb{R}}(x) = M^{lpha}_{\mathrm{ld}}(x) \cap \mathbb{R}$$

for the " $\alpha$ -ladder"  $M_{\rm ld}^{\alpha}(x)$  for such *x*.

For lightface version, consider (cf. [8] and [5])

M = output of the Q-local local  $K^c$ -construction of  $M_{\rm ld}^{\alpha}(x)$ .

Show

$$\mathrm{OD}_{\alpha 2} \subseteq \mathbb{R} \cap M \subseteq \mathrm{OD}_{\alpha 2}^{\mathbb{R}}.$$

Similar for n > 2.

#### End of weak gap

Example:  $[\alpha, \beta]$  is weak, and for  $P_g(x)$  the corresponding mouse on a cone of x,

$$\omega = \rho_1^{P_{g}(x)} < \lambda^{P_{g}(x)} < \mathrm{OR}^{P_{g}(x)},$$

 $\lambda^{P} \notin p_{1}^{P_{g}(x)}, (\lambda^{P})^{+P} < OR^{P}, \text{ and } \Sigma_{1}^{\mathcal{J}_{\beta}(\mathbb{R})} \text{ is } \mu\text{-reflecting.(see [6]).}$ 

# Definition 0.41.

For an X-premouse R, say that R is <u>relevant</u> if there is  $\delta = \delta_0^R < OR^R$  such that:

-  $R \models \delta$  is the least Woodin > rank(X),

$$- R = P_{g}(R|\delta),$$

-  $R|\delta$  is  $P_{g}$ -closed.

# Definition 0.42.

For relevant R, let:

$$-\left\langle \alpha_{n}^{R}\right\rangle _{n<\omega}$$
 be the canonical  $\omega$ -sequence cofinal in  $\mathrm{OR}^{R}$ ,

$$- \gamma_n^R = \sup(\delta_0^R \cap \operatorname{Hull}_1^{R|\alpha_n^R}(X \cup \{p_1^R\}),$$

$$- t_n^R = \mathrm{Th}_1^R(X \cup \gamma_n^R \cup \{p_1^R\}).$$

# Definition 0.43 (Ladder mouse at end of weak gap).

For a cone of y,  $M_{\text{Id}}^{P_{\text{g}}}(y)$  is the least relevant mouse N such that letting  $\delta = \delta_0^N$ , for each  $n < \omega$ , there is a relevant  $R \triangleleft N | \delta$  with  $t_n^R = t_n^N$  (after substituting  $p_1^R$  for  $p_1^N$ ).

#### John R. Steel. A theorem of Woodin on mouse sets. In Alexander S. Kechris, Benedikt Löwe, and John R. Steel, editors, Ordinal Definability and Recursion Theory: The Cabal Semina Volume III. pages 243-256. Cambridge Universit Cambridge Books Online. Preprint available at author's website. Mitch Rudominer. The mouse set theorem just past projective. Journal of Mathematical Logic, page 2450014 Mitch Rudominer. Mouse sets. Annals of Pure and Applied Logic, 87(1):1-100. Farmer Schlutzenberg. Ladder mice. arXiv:2406.06289 Farmer Schlutzenberg. Mouse scales. arXiv:2310.19764v2. Farmer Schlutzenberg and John Steel. $\Sigma_1$ gaps as derived models and correctness of mice. arXiv:2307.08856, 2023. John R. Steel. Projectively well-ordered inner models. Annals of Pure and Applied Logic, 74(1):77-104 John R. Steel. Local K<sup>c</sup> constructions.

The Journal of Symbolic Logic, 72(3):721-737, 200