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Will work in ZF + AD + V = L(R).

Definition 0.1.
Given inner model M and complexity class I', M is -correct if

ROM = o(x) <= R ¢(X),

for all formulas ¢ € ' and x € RN M.

.

Definition 0.2.
For n < w, Al (w¢) denotes the set of reals which are A} in a countable ordinal:

X € Aj(wr)
iff there is ¢ < wy and I}, formulas , v such that for all w € WOy, all n < w,
nex < o(w,n) < —(w,n).
Equivalently, there is a ¢ < wy and a & formula ¢ such that for all y € R, we have

y=x <= p(w,y).

.




Theorem 0.3.
RN ngk = Al (no ordinal parameters).
Lo is ¥.}-correct but not X} -correct.

Theorem 0.4.
RNL= A; (LL)1 )
L is X}-correct but not ©}-correct.

| \

.

The following results are due to Martin, Mitchell, Steel, Woodin (see [7]):

Theorem 0.5.

RN M1 = Aé(oﬁ)
M, is ¥} -correct but not ¥}-correct.

.

Theorem 0.6.
RN M2 = Al(uﬁ)
M. is ¥} -correct but not ¥L-correct.

A

Theorem 0.7.
RN M3 = Aé(m)
M is ¥} -correct but not Y1 -correct.

A

Etc through My, Mo, 1.



Theorem 0.8 (Anti-correctness for ngk, ni).

Let M = L .. Then we have:
o (NHYVIMis (XM (Spector-Gandy)
o (MHMis (Z7)V I M, (Ville?)
uniformly recursively so: there are recursive ¢ — 1, and ¢ — o, such that for all
¢ which are N} formulas, v, o, are ¥ formulas, and for all x € RN M,

VIEo(x) <= MEy.(x),

and
M o(x) <= V= o.(x).




Theorem 0.9.

()Y 1 (RN L) is not L-definable;

even
(XY |w is not L-definable.

In fact, there are A} reals which are not L (e.g. 0%)

Theorem 0.10 (Anti-correctness for M;, }).

We have:
o (M3)Y I My is (THM, (Woodin)
o (N3)" is (T5)" [ My, (Martin-Mitchell-Steel)

uniformly recursively so.

V.

Likewise for Ma,, Mapq and MY, 4, %35, for all n.




Definition 0.11.
The L(R) language is language of set theory augmented with a constant R for R.

w7+ and N7~™ always in L(R) language.

Definition 0.12.
Forn>1:
e Y% denotes ¥4,
e M¥ denotes -1 %, so MN§ =Ty

e ¥} , denotes F*}.

Definition 0.13.
Letaa € ORand n > 1.

| N

OD,,, denotes the set of x € R such that for some £ < wy and some ¥, formula ¢,
y=x <= Ju(R) E o(w,x)

forall w € WO, and all y € R.

Likewise ODE,, but with =¥ replacing X ..




We will first consider the case o = 1, so J,(R) = J(R).
Remark 0.14.

For n > 1, (£¥)7®) is recursively equivalent to = ™.

So for a = 1 case, will just write “X.,” and “I,,".




Corollary 0.15.

Let M., = stack,., M.
We have:

e ODY, = 0Dy = M_,NR.
o M_,, is projectively correct but not ¥ ™ -correct.

Theorem 0.16 (Woodin, [1]).

Let \ be a limit ordinal. Then ODy; = RN M for a mouse M.

Remark 0.17.

Rudominer [3] showed that OD, = R N M for certain other («, n) with [a, a]
projective-like: a < wi" and either cof(a) > w or [cof (o) < w and n = 1].




Ladder mice:

Definition 0.18.

M-ladder the least mouse M such that there is (¢,),,_,, such that:
— 0, is an M-cardinal,
— M (M|6,) < M and M7 (M|6,,) =6, is Woodin”.

Write My = M.

Remark 0.19.
e My E"there are no Woodin cardinals”.
o My £ ZFC.

| \

.

Theorem 0.20 (Rudominer, Woodin).
ODY, = ODy, = RN M.




Theorem 0.21 (S., [4]).
Assume ZF + AD + V = L(R). Let o with [«, a] a projective-like gap and either:
— « Is a limit of countable cofinality, or
— a =+ 1 where § does not end a strong gap.
Then:
- OD,, = OD{,.
— There is a mouse M such that OD,, = RN M.

Remark 0.22.

Rudominer [3] proved other instances, e.g. projective-like [«, «] where « has
uncountable cofinality.

Recall:
— [a, 5] is @ gap iff this interval is maximal such that 7, (R) <1 J5(R).
— A gap [a, f] is projective-like iff 7,(R) #~= KP.
— The non-projectve-like gaps are divided into weak and strong.




Theorem 0.23 (?).

Assume ZF + AD + V = L(R), and let [a, o] be as before. Then there is a real xo
such that for all reals x, there is an (x, xo)-mouse M = Mg (x, Xo) analogous to
My, and there is & and a cofinal ¥1-elementary

o Ja(RM) = 7,(R),
such that:
o N7®({x0}) is T ({x0)),

_ (M .
o M0 (0x0}) is 552 ({x0}),
uniformly recursively.

A

Remark 0.24.
(Maybe this follows from DST arguments already? But IMT proof should be new;

[4].)

.




Ladder mice at end of weak/strong gaps (see paper):

Theorem 0.25 (S., [4]).

Let [«, 0] be a weak gap, or 5 =~ + 1 where v ends a strong gap. Then for a
cone of reals x, there is an x-mouse M’ (x) definable from x over J(R),
analogous to My over J(R).

M/ (x) has infinitely many Woodins; a “ladder” ascends to its least Woodin.

Remark 0.26.

M. (x) is defined using earlier work of Steel, S., analysing J3(R) as a derived
model [6].




I(®)
|_|1

assertions about reals are recursively equivalent to A,__ ¥},
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ny (®) assertions about reals are recursively equivalent to Anew Zon-
There is a recursive ¢ — (¥n,),_., such that for each My formula ¢, ¢, isa ¥},
formula and for all reals x,

(TR) () = N o).

n<w

Likewise conversely, 1) — ¢ 7
Let T, be the canonical tree projecting to a universal £}, set C w x “w x “w.
For a Iy formula ¢(u, w) and the X, formula

o(u) <= Fwo(u,w),

let T, be the tree building (x, w, y) such that:
- X, W€ “w,
— ¥ : w — OR is the interlacing of (y,)
— (Yp,n, X, W, ¥n) € [T,] for all n,
— ¥y I'ninvolves only entries from yo, ..., ¥n_1.
Then

with y, : w — OR for each n,

n<w

pIT] = {x | T(R) [= e(x)}.



Fix a My formula ¢(u, w) and the ¥, formula
o(u) = Fw o(u,w).
Let N be a projectively correct model. Then

T denotes [T, as computed in N].




Fix a My formula ¢(u, w) and the ¥, formula
o(u) <= Fwo(u,w).
Let N be a projectively correct model. Then
T denotes [T, as computed in N].
If N’ is projectively correct and RY C RV, there is a natural embedding
TNN' T;V — Tévl.

In particular, 7y : T — T,, s0 p[TY] C p[T,].




Consider N = My,. For reals x € My,

(TMa), isilifounded = (T,)xisillfounded = J(R) = o(x).

But the converse is not clear; maybe there are reals x € My such that
(TMs), is wellfounded

but
(T,)x is illfounded, so J(R) E o(x).

Theorem 0.27 (Woodin, [2]).

There is v < wy such that for all x € My, the following are equivalent:
= J(R) = o(x)
— (T,)x is illfounded
— (TMa), is illfounded or has rank > .

So My knows 2‘27 ® truth. Proof uses stationary tower forcing.




Recall OD;, = ODY.
Theorem 0.28 (Rudominer, ~ 2000).

RN Mgy € ODys».

Theorem 0.29 (Woodin, 2018, [2]).
OD» C RN M.

Theorem 0.30 (Rudominer, Woodin).
ODi> = RN M.




Remark 0.31.
Steel showed that My; can definably identify the parameter ~.

What about anti-correctness?
(Mg, N7 )

is analogous to (M}, M%) and to (L, M}).

Want recursive functions ¢ — ¢, and ¢ — o, such that for all M, formulas ¢, v,
and g, are X, and for all x € R N M,

T(R) [ o(x) <= TR™) | vy(x) (1)

and

T ®"M) £ o(x) <= T(R) [ 0,(X)- ()
For (2), use Rudominer’s earlier work.
For (1), need more.




Recall for My, and ¢ is MN}:
R = p(x) <= R"™ = 9y(x),
Y, is L1, ¥,(X) says “there is a MN}-iterable ¢(x)-prewitness”.
Definition 0.32.
Consider M} formula

o(U) <= Vz71(Uu,2),

where 7 is .
Let x € R. A o(x)-prewitness is a pair (N, ¢) such that:

(i) Nis a premouse,

(i) x € N,

(iiiy N | ZF~+“0 is Woodin”,
(iv) N E‘itis forced by the extender algebra at ¢ that 7(x, z), where Z is the

generic real”.

Theorem 0.33 (Woodin).
For all x € R N My and N} formulas », the following are equivalent:

- R = o(x),
— there is an iterable ©(x)-prewitness,
— there is a N}-iterable o(x)-prewitness N ¢ HCY,

— RM = 4, (x).
.

| A\

N




We want, for I, formulas ¢, a >, formula 1, such that:

TR) [ (x) <= T®R™M) E vy (x).
1,(x) should say “there is a INs-iterable (x)-prewitness”.
Remark 0.34.

— My-iterability is 7).
— My is ¥/ ®-correct.
— Every MMy-iterable premouse P € HCM is iterable.

What is a ¢(x)-prewitness (for N, formulas ¢)?
— Analogue to ((x)-prewitness for N} formulas ¢?
— Not enough Woodinness in segments of My, for a direct analogue...




Definition 0.35.

An n-partial ladder is a premouse N such that for some 6,
e 0= (0),- is astrictly increasing (n + 1)-tuple of ordinals of N,
0, is an N-cardinal for all i <n,
0++N is the largest cardinal of N,
N is closed under M}, for each k < w,
M,.#(N\e,-) is the Q-structure for 6;, for each i < n, and 6; is the least such 6.
Write oV = 4.




Definition 0.36.
Fix X, formula o. Let N, 6 be such that N =0 is a cardinal and 6+ exists” and N
is M -closed for all k < w. Write

SN = TNl

for g being (N, Col(w, #))-generic.




Definition 0.36

Fix X, formula o. Let N, 6 be such that N =0 is a cardinal and 6+ exists” and N
is M -closed for all k < w. Write

SN = TNl

for g being (N, Col(w, #))-generic.
Given N/, ¢’ as above with 6 < ¢’ and N|9*N = N'|o+N', write

799/ Sg — S@/ .
for the canonical embedding

. TN N'lg’
7T_'/'g[g]_>7'g [9']

where g, g’ are as above with g’ being (N[g], Col(w, #))-generic.

Fact 0.1 (Hjorth).

SY, SN mNN" are independent of g, g'; so they are in N'.




Let ¢(x) = —o(x) be M,. For a p(x)-witness, we want roughly:
— an (iterable) 0-partial ladder premouse P, with x € P,
where player 2 wins the following game gl
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Let ¢(x) = —o(x) be M,. For a p(x)-witness, we want roughly:
— an (iterable) 0-partial ladder premouse P, with x € P,
where player 2 wins the following game gl

0.1 Player 1 plays:
— A correct tree 7o on Py, based on Py|05?; let P = M7 and 6}, = 65,
— (S0, ) € (S} oty With In(So, ) = 1,
0.2 Player 2 plays:
— A 1-partial ladder P; such that Pj|(65)*Fo < Py < P,
1.1 Player 1 plays:
— A correct tree 7; on P; which is above 6 and based on P;|0;

let P, = MTi and 0, = 0",
~ (51.11) € (8} )0 With 7%y (S0, %) < (1, &) and h(sy. ) = 2,
1.2 Player 2 plays:
— A 2-partial ladder P; such that P;|(6})*F1 <« Py < P,
2.1 efc,
2.2 efc...

The first player to break a rule loses; otherwise player 2 wins.



If Py is iterable and player 2 has a winning strategy for 4 then 7 (R) |= ¢(x).

N,

Suppose J(R) = —p(x), so J(R) = o(x), i.e.
T(R)  Fw d(w, x)
where ¢ is ;. Let (w, y) be such that (x, w, y) € [T/].
Let Z € “R yield ranks of all ordinals in y, w.r.t. the prewellorders of the scales.
Let 7o on P, be the (w, Z)-genericity iteration at 6. Let Py = MD. Let
(S0, f0) = (W, ¥) 1.

Let (so, fy) be such that whenever g is (P, Col(w, 6))-generic,

7PolahY (85, 1) = (S0, bo)-
Let P; < P be played by player 2.

lterate P; above 6, to make (w, Z) generic....etc.
...Tree on Py with unbounded drops, contradiction. O

5\,




Definition 0.38 (Pseudo-definition).

Let P, be a 0-partial ladder and x € RP. Let Aq € Py. We say that (P, Ag) is a
o(x)-prewitness iff A, is a winning strategy in the game %;"29) which is played

as is 4., except that:
— all trees 7, are trivial,
— Player 2 must play move (n+ 1).2 according to A,
— At move (n+ 1).2, player 2 must ensure that A,1 € P,y1, Where

A1 = tail strategy determined by A, sy, t,.

(See paper for formal definition.)




Definition 0.39.
Let (0,),_., be the “rungs” of the ladder of M4. Let

n<w

SMe — dirlim,,, ng a

under the maps " .

5\,

(Recall p(u) is My and o(u) < —p(u).)

Lemma 0.40
Let x € RM«. The following are equivalent:
I(R) k= ¢(x),

o x ¢ p[T,],

e (T,)x is wellfounded,
x ¢ p[SH],
(SMa), is wellfounded,
there is a ¢(x)-prewitness (P, A) such that P < My|w(™,
My |=“there is a ¢(x)-prewitness (P, A) € HC such that P is I -iterable”.

A\

(The last item gives ,(x).)



Proof Sketch.

Suppose x € My but x ¢ p[SMs], so (SM4), is wellfounded.
We want a ¢(x)-prewitness P < Mg|w™.

Given s, t with Ih(s, t) = n, say (P, A) is a (¢(x), s, t)-prewitness iff P is an

n-partial ladder, (s, t) € Sep, and player 2 wins from position (P, A, s, t).

Let
. oM M,
Thpo0 - Senld — Soold

be the direct limit map.

For each n < w and each (s, t) € Sy’ with In(s, t) = n, there is a
(p(x), s, t)-prewitness P < My with I\/]ld’(g-l-Mld aP.

By induction on SMs-rank of 7y, (S, t), using condensation.

It follows that there is a (¢(x), 0, 0)-prewitness P < Mig|wi™. O




Assume ZF + AD + V = L(R). Let « be such that [«, o] is a projective-like gap
and either « is a limit of countable cofinality, or « = 5 + 1 where 3 does not end
a strong gap. Then:

— OD,, = OD;,.
— There is a mouse M such that OD,, = R N M.

5\,

Proof setup.
Consider n = 2. The foregoing adapts to J,(IR) on a certain cone of x, giving

OD,2(X) = ODgy(X) = Mz(x) NR
for the “a-ladder” Mg(x) for such x.
For lightface version, consider (cf. [8] and [5])
M = output of the Q-local local K°-construction of Mg(x).

Show
OD.,, CRNM C OD%,.

Similar for n > 2. []

.




End of weak gap
Example: [a, 5] is weak, and for P,(x) the corresponding mouse on a cone of x,

w = pfg(x) < /\Pg(x) < ORPg(X)’
AP ¢ pl™) (\PY+P < ORP, and £7"™ is pi-reflecting.(see [6]).

Definition 0.41.

For an X-premouse R, say that R is relevant if there is § = 6§ < OR" such that:
— R %) is the least Woodin > rank(X)”,
- R= Pg(R|5),
— RJo is P,-closed.

Definition 0.42.
For relevant R, let:
— (off),_, be the canonical w-sequence cofinal in OR",

aR
— = sup(8§ N Hull{** (X U {pfi}),
— 17 = Th(X U~F U {pf}).

| \

5\,

Definition 0.43 (Ladder mouse at end of weak gap).

For a cone of y, l\/ll'jg(y) is the least relevant mouse N such that letting 6 = &Y', for
each n < w, there is a relevant R < N|§ with 7t = tV (after substituting pf for pl).
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