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Will work in ZF + AD + V = L(R).

Definition 0.1.
Given inner model M and complexity class Γ, M is Γ-correct if

R ∩ M |= φ(x) ⇐⇒ R |= φ(x),

for all formulas φ ∈ Γ and x ∈ R ∩ M.

Definition 0.2.
For n < ω, ∆1

n(ω1) denotes the set of reals which are ∆1
n in a countable ordinal:

x ∈ ∆1
n(ω1)

iff there is ξ < ω1 and Σ1
n formulas φ, ψ such that for all w ∈ WOξ, all n < ω,

n ∈ x ⇐⇒ φ(w ,n) ⇐⇒ ¬ψ(w ,n).

Equivalently, there is a ξ < ω1 and a Σ1
n formula φ such that for all y ∈ R, we have

y = x ⇐⇒ φ(w , y).
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Theorem 0.3.
R ∩ Lωck

1
= ∆1

1 (no ordinal parameters).
Lωck

1
is Σ1

0-correct but not Σ1
1-correct.

Theorem 0.4.
R ∩ L = ∆1

2(ω1).
L is Σ1

2-correct but not Σ1
3-correct.

The following results are due to Martin, Mitchell, Steel, Woodin (see [7]):

Theorem 0.5.
R ∩ M1 = ∆1

3(ω1).
M1 is Σ1

2-correct but not Σ1
3-correct.

Theorem 0.6.
R ∩ M2 = ∆1

4(ω1).
M2 is Σ1

4-correct but not Σ1
5-correct.

Theorem 0.7.
R ∩ M3 = ∆1

5(ω1).
M3 is Σ1

4-correct but not Σ1
5-correct.

Etc through M2n, M2n+1.
Ladder mice



Theorem 0.8 (Anti-correctness for Lωck
1
,Π1

1).

Let M = Lωck
1

. Then we have:

• (Π1
1)

V ↾M is (Σ1
1)

M (Spector-Gandy)
• (Π1

1)
M is (Σ1

1)
V ↾M, (Ville?)

uniformly recursively so: there are recursive φ 7→ ψφ and φ 7→ ϱφ such that for all
φ which are Π1

1 formulas, ψφ, ϱφ are Σ1
1 formulas, and for all x ∈ R ∩ M,

V |= φ(x) ⇐⇒ M |= ψφ(x),

and
M |= φ(x) ⇐⇒ V |= ϱφ(x).
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Theorem 0.9.

(Σ1
3)

V ↾(R ∩ L) is not L-definable;

even
(Σ1

3)
V ↾ω is not L-definable.

In fact, there are ∆1
3 reals which are not L (e.g. 0#)

Theorem 0.10 (Anti-correctness for M1,Π
1
3).

We have:
• (Π1

3)
V ↾M1 is (Σ1

3)
M1, (Woodin)

• (Π1
3)

M1 is (Σ1
3)

V ↾M1, (Martin-Mitchell-Steel)
uniformly recursively so.

Likewise for M2n,M2n+1 and Π1
2n+3,Σ

1
2n+3, for all n.
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Definition 0.11.

The L(R) language is language of set theory augmented with a constant Ṙ for R.

Σ
Jα(R)
n and Π

Jα(R)
n always in L(R) language.

Definition 0.12.
For n ≥ 1:
• ΣR

1 denotes Σ1,
• ΠR

n denotes ¬ΣR
n , so ΠR

1 = Π1

• ΣR
n+1 denotes ∃RΠR

n .

Definition 0.13.
Let α ∈ OR and n ≥ 1.

ODαn denotes the set of x ∈ R such that for some ξ < ω1 and some Σn formula φ,

y = x ⇐⇒ Jα(R) |= φ(w , x)

for all w ∈ WOξ and all y ∈ R.

Likewise ODR
αn, but with ΣR

n replacing Σn.
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We will first consider the case α = 1, so Jα(R) = J (R).

Remark 0.14.

For n ≥ 1, (ΣR
n )

J (R) is recursively equivalent to Σ
J (R)
n .

So for α = 1 case, will just write “Σn” and “Πn”.

Ladder mice



Corollary 0.15.

Let M<ω = stackn<ωM#
n .

We have:
• ODR

11 = OD11 = M<ω ∩ R.

• M<ω is projectively correct but not ΣJ (R)
2 -correct.

Theorem 0.16 (Woodin, [1]).
Let λ be a limit ordinal. Then ODλ1 = R ∩ M for a mouse M.

Remark 0.17.
Rudominer [3] showed that ODR

αn = R ∩ M for certain other (α, n) with [α, α]
projective-like: α ≤ ωω1

1 and either cof(α) > ω or [cof(α) ≤ ω and n = 1].
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Ladder mice:

Definition 0.18.
M-ladder the least mouse M such that there is ⟨θn⟩n<ω such that:

– θn is an M-cardinal,
– M#

n (M|θn) ◁M and M#
n (M|θn) |=“θn is Woodin”.

Write Mld = M.

Remark 0.19.
• Mld |=“there are no Woodin cardinals”.
• Mld ̸|= ZFC.

Theorem 0.20 (Rudominer, Woodin).

ODR
12 = OD12 = R ∩ Mld.
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Theorem 0.21 (S., [4]).
Assume ZF + AD + V = L(R). Let α with [α, α] a projective-like gap and either:

– α is a limit of countable cofinality, or
– α = β + 1 where β does not end a strong gap.

Then:
– ODαn = ODR

αn.
– There is a mouse M such that ODαn = R ∩ M.

Remark 0.22.
Rudominer [3] proved other instances, e.g. projective-like [α, α] where α has
uncountable cofinality.

Recall:
– [α, β] is a gap iff this interval is maximal such that Jα(R) ≼1 Jβ(R).
– A gap [α, β] is projective-like iff Jα(R) ̸|= KP.
– The non-projectve-like gaps are divided into weak and strong.
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Theorem 0.23 (?).
Assume ZF + AD + V = L(R), and let [α, α] be as before. Then there is a real x0

such that for all reals x, there is an (x , x0)-mouse M = Mα
ld(x , x0) analogous to

Mld, and there is ᾱ and a cofinal Σ1-elementary

σ : Jᾱ(RM) → Jα(R),

such that:
• Π

Jα(R)
2 ({x0}) is Σ

Jᾱ(RM)
2 ({x0}),

• Π
Jᾱ(RM)
2 ({x0}) is Σ

Jα(R)
2 ({x0}),

uniformly recursively.

Remark 0.24.
(Maybe this follows from DST arguments already? But IMT proof should be new;
[4].)
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Ladder mice at end of weak/strong gaps (see paper):

Theorem 0.25 (S., [4]).
Let [α, β] be a weak gap, or β = γ + 1 where γ ends a strong gap. Then for a
cone of reals x, there is an x-mouse Mβ

ld(x) definable from x over Jβ(R),
analogous to Mld over J (R).

Mβ
ld(x) has infinitely many Woodins; a “ladder” ascends to its least Woodin.

Remark 0.26.

Mβ
ld(x) is defined using earlier work of Steel, S., analysing Jβ(R) as a derived

model [6].
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Π
J (R)
1 assertions about reals are recursively equivalent to

∧
n<ω Σ

1
2n.

There is a recursive φ 7→ ⟨ψn,φ⟩n<ω such that for each Π1 formula φ, ψn,φ is a Σ1
2n

formula and for all reals x ,(
J (R) |= φ(x)

)
⇐⇒

∧
n<ω

ψφ,n(x).

Likewise conversely, ψ⃗ 7→ φψ⃗.
Let Tn be the canonical tree projecting to a universal Σ1

2n set ⊆ ω × ωω × ωω.
For a Π1 formula φ(u,w) and the Σ2 formula

ϱ(u) ⇐⇒ ∃Rw φ(u,w),

let Tϱ be the tree building (x ,w , y⃗) such that:
– x ,w ∈ ωω,
– y⃗ : ω → OR is the interlacing of ⟨yn⟩n<ω with yn : ω → OR for each n,
– (ψφ,n, x ,w , yn) ∈ [Tn] for all n,
– y⃗ ↾n involves only entries from y0, . . . , yn−1.

Then
p[Tϱ] =

{
x
∣∣ J (R) |= ϱ(x)

}
.
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Fix a Π1 formula φ(u,w) and the Σ2 formula

ϱ(u) ⇐⇒ ∃Rw φ(u,w).

Let N be a projectively correct model. Then

T N
ϱ denotes [Tϱ as computed in N].

If N ′ is projectively correct and RN ⊆ RN′, there is a natural embedding

πNN′ : T N
ϱ → T N′

ϱ .

In particular, πNV : T N
ϱ → Tϱ, so p[T N

ϱ ] ⊆ p[Tϱ].
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Consider N = Mld. For reals x ∈ Mld,

(T Mld
ϱ )x is illfounded =⇒ (Tϱ)x is illfounded =⇒ J (R) |= ϱ(x).

But the converse is not clear; maybe there are reals x ∈ Mld such that

(T Mld
ϱ )x is wellfounded

but
(Tϱ)x is illfounded, so J (R) |= ϱ(x).

Theorem 0.27 (Woodin, [2]).

There is γ < ωMld
2 such that for all x ∈ Mld, the following are equivalent:

– J (R) |= ϱ(x)
– (Tϱ)x is illfounded
– (T Mld

ϱ )x is illfounded or has rank ≥ γ.

So Mld knows Σ
J (R)
2 truth. Proof uses stationary tower forcing.
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Recall OD12 = ODR
12.

Theorem 0.28 (Rudominer, ≈ 2000).
R ∩ Mld ⊆ OD12.

Theorem 0.29 (Woodin, 2018, [2]).
OD12 ⊆ R ∩ Mld.

Theorem 0.30 (Rudominer, Woodin).
OD12 = R ∩ Mld.
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Remark 0.31.
Steel showed that Mld can definably identify the parameter γ.

What about anti-correctness?
(Mld,Π

J (R)
2 )

is analogous to (M#
1 ,Π

1
3) and to (Lωck

1
,Π1

1).

Want recursive functions φ 7→ ψϱ and φ 7→ ϱφ such that for all Π2 formulas φ, ψφ
and ϱφ are Σ2 and for all x ∈ R ∩ Mld,

J (R) |= φ(x) ⇐⇒ J (RMld) |= ψφ(x) (1)

and
J (RMld) |= φ(x) ⇐⇒ J (R) |= ϱφ(x). (2)

For (2), use Rudominer’s earlier work.
For (1), need more.
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Recall for M1, and φ is Π1
3:

R |= φ(x) ⇐⇒ RM1 |= ψφ(x),

ψφ is Σ1
3, ψφ(x) says “there is a Π1

2-iterable φ(x)-prewitness”.

Definition 0.32.
Consider Π1

3 formula
φ(u) ⇐⇒ ∀z τ(u, z),

where τ is Σ1
2.

Let x ∈ R. A φ(x)-prewitness is a pair (N, δ) such that:
(i) N is a premouse,
(ii) x ∈ N,
(iii) N |= ZF−+“δ is Woodin”,
(iv) N |=“it is forced by the extender algebra at δ that τ(x , ż), where ż is the

generic real”.

Theorem 0.33 (Woodin).

For all x ∈ R ∩ M1 and Π1
3 formulas φ, the following are equivalent:

– R |= φ(x),
– there is an iterable φ(x)-prewitness,
– there is a Π1

2-iterable φ(x)-prewitness N ∈ HCM1,
– RM1 |= ψφ(x).
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We want, for Π2 formulas φ, a Σ2 formula ψφ such that:

J (R) |= φ(x) ⇐⇒ J (RMld) |= ψφ(x).

ψφ(x) should say “there is a Π1-iterable φ(x)-prewitness”.

Remark 0.34.

– Π1-iterability is Π
J (R)
1 .

– Mld is Σ
J (R)
1 -correct.

– Every Π1-iterable premouse P ∈ HCMld is iterable.

What is a φ(x)-prewitness (for Π2 formulas φ)?
– Analogue to φ(x)-prewitness for Π1

3 formulas φ?
– Not enough Woodinness in segments of Mld for a direct analogue...
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Definition 0.35.

An n-partial ladder is a premouse N such that for some θ⃗,

• θ⃗ = ⟨θi⟩i≤n is a strictly increasing (n + 1)-tuple of ordinals of N,
• θi is an N-cardinal for all i ≤ n,
• θ++N

n is the largest cardinal of N,
• N is closed under M#

k , for each k < ω,

• M#
i (N|θi) is the Q-structure for θi , for each i ≤ n, and θi is the least such θ.

Write θ⃗N = θ⃗.

Ladder mice



Definition 0.36.
Fix Σ2 formula ϱ. Let N, θ be such that N |=“θ is a cardinal and θ++ exists” and N
is M#

k -closed for all k < ω. Write

SN
θ = T N[g]

ϱ

for g being (N,Col(ω, θ))-generic.

Given N ′, θ′ as above with θ < θ′ and N|θ+N = N ′|θ+N′, write

πNN′

θθ′ : SN
θ → SN′

θ′ .

for the canonical embedding

π : T N[g]
ϱ → T N′[g′]

ϱ ,

where g,g′ are as above with g′ being (N[g],Col(ω, θ′))-generic.

Fact 0.1 (Hjorth).

SN
θ ,S

N′

θ′ , π
NN′

θθ′ are independent of g,g′; so they are in N ′.
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Let φ(x) = ¬ϱ(x) be Π2. For a φ(x)-witness, we want roughly:
– an (iterable) 0-partial ladder premouse P0 with x ∈ P0

where player 2 wins the following game G P0
x :

0.1 Player 1 plays:

– A correct tree T0 on P0, based on P0|θP0
0 ; let P ′

0 = MT0
∞ and θ′0 = θ

P′
0

0 ,
– (s0, t0) ∈ (SP′

0
θ′0
)ϱ(x) with lh(s0, t0) = 1,

0.2 Player 2 plays:
– A 1-partial ladder P1 such that P ′

0|(θ′0)+P′
0 ◁ P1 ◁ P ′

0,
1.1 Player 1 plays:

– A correct tree T1 on P1 which is above θ′0 and based on P1|θ1;
let P ′

1 = MT1
∞ and θ′1 = θ

P′
1

1 ,
– (s1, t1) ∈ (SP′

1
θ′1
)ϱ(x) with πP′

0P′
1

θ′0θ
′
1
(s0, t0) ◁ (s1, t1) and lh(s1, t1) = 2,

1.2 Player 2 plays:
– A 2-partial ladder P2 such that P ′

1|(θ′1)+P′
1 ◁ P2 ◁ P ′

1,
2.1 etc,
2.2 etc...

The first player to break a rule loses; otherwise player 2 wins.
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0 = MT0
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P′
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0
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1 = MT1
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θ′0θ
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Lemma 0.37.

If P0 is iterable and player 2 has a winning strategy for G P0
x then J (R) |= φ(x).

Proof.
Suppose J (R) |= ¬φ(x), so J (R) |= ϱ(x), i.e.

J (R) |= ∃Rw ψ(w , x)

where ψ is Π1. Let (w , y⃗) be such that (x ,w , y⃗) ∈ [T V
ϱ ].

Let z⃗ ∈ ωR yield ranks of all ordinals in y⃗ , w.r.t. the prewellorders of the scales.

Let T0 on P0 be the (w , z⃗)-genericity iteration at θ0. Let P ′
0 = MT0

∞ . Let

(s0, t̃0) = (w , y⃗)↾1.

Let (s0, t0) be such that whenever g is (P ′
0,Col(ω, θ′0))-generic,

πP′
0[g],V (s0, t0) = (s0, t̃0).

Let P1 ◁ P ′
0 be played by player 2.

Iterate P1 above θ′0, to make (w , z⃗) generic....etc.
...Tree on P0 with unbounded drops, contradiction.
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Definition 0.38 (Pseudo-definition).

Let P0 be a 0-partial ladder and x ∈ RP0. Let ∆0 ∈ P0. We say that (P0,∆0) is a
φ(x)-prewitness iff ∆0 is a winning strategy in the game G ∗(P0,∆0)

x , which is played
as is G P0

x , except that:
– all trees Tn are trivial,
– Player 2 must play move (n + 1).2 according to ∆n,
– At move (n + 1).2, player 2 must ensure that ∆n+1 ∈ Pn+1, where

∆n+1 = tail strategy determined by ∆n, sn, tn.

(See paper for formal definition.)
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Definition 0.39.
Let ⟨θn⟩n<ω be the “rungs” of the ladder of Mld. Let

SMld
∞ = dirlimn<ωSMld

θn

under the maps πMld
θnθm

.

(Recall φ(u) is Π2 and ϱ(u) ⇐⇒ ¬φ(u).)

Lemma 0.40.
Let x ∈ RMld. The following are equivalent:
• J (R) |= φ(x),
• x /∈ p[Tϱ],
• (Tϱ)x is wellfounded,
• x /∈ p[SMld

∞ ],
• (SMld

∞ )x is wellfounded,
• there is a φ(x)-prewitness (P,∆) such that P ◁Mld|ωMld

1 ,
• Mld |=“there is a φ(x)-prewitness (P,∆) ∈ HC such that P is Π1-iterable”.

(The last item gives ψφ(x).)
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Proof Sketch.
Suppose x ∈ Mld but x /∈ p[SMld

∞ ], so (SMld
∞ )x is wellfounded.

We want a φ(x)-prewitness P ◁Mld|ωMld
1 .

Given s, t with lh(s, t) = n, say (P,∆) is a (φ(x), s, t)-prewitness iff P is an
n-partial ladder, (s, t) ∈ SP

θP
n
, and player 2 wins from position (P,∆, s, t).

Let
πθn∞ : SMld

θn
→ SMld

∞

be the direct limit map.

SUBCLAIM.

For each n < ω and each (s, t) ∈ SMld
θn

with lh(s, t) = n, there is a
(φ(x), s, t)-prewitness P ◁Mld with Mld|θ+Mld

n ◁ P.

Proof.
By induction on SMld

∞ -rank of πθn∞(s, t), using condensation.

It follows that there is a (φ(x), ∅, ∅)-prewitness P ◁Mld|ωMld
1 .
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Theorem (S.).
Assume ZF + AD + V = L(R). Let α be such that [α, α] is a projective-like gap
and either α is a limit of countable cofinality, or α = β + 1 where β does not end
a strong gap. Then:

– ODαn = ODR
αn.

– There is a mouse M such that ODαn = R ∩ M.

Proof setup.
Consider n = 2. The foregoing adapts to Jα(R) on a certain cone of x , giving

ODα2(x) = ODR
α2(x) = Mα

ld(x) ∩ R

for the “α-ladder” Mα
ld(x) for such x .

For lightface version, consider (cf. [8] and [5])

M = output of the Q-local local K c-construction of Mα
ld(x).

Show
ODα2 ⊆ R ∩ M ⊆ ODR

α2.

Similar for n > 2.
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End of weak gap
Example: [α, β] is weak, and for Pg(x) the corresponding mouse on a cone of x ,

ω = ρ
Pg(x)
1 < λPg(x) < ORPg(x),

λP /∈ pPg(x)
1 , (λP)+P < ORP , and Σ

Jβ(R)
1 is µ-reflecting.(see [6]).

Definition 0.41.
For an X -premouse R, say that R is relevant if there is δ = δR

0 < ORR such that:
– R |=“δ is the least Woodin > rank(X )”,
– R = Pg(R|δ),
– R|δ is Pg-closed.

Definition 0.42.
For relevant R, let:

–
〈
αR

n

〉
n<ω be the canonical ω-sequence cofinal in ORR,

– γR
n = sup(δR

0 ∩ HullR|αR
n

1 (X ∪ {pR
1 }),

– tR
n = ThR

1 (X ∪ γR
n ∪ {pR

1 }).

Definition 0.43 (Ladder mouse at end of weak gap).

For a cone of y , MPg
ld (y) is the least relevant mouse N such that letting δ = δN

0 , for
each n < ω, there is a relevant R ◁ N|δ with tR

n = tN
n (after substituting pR

1 for pN
1 ).
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