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We outline a proof of Strong Mouse Capturing in natural models of AD" (i.e. those of the form
V = L(p(R))) below the minimal model of LSA, which is the theory AD*+@ = 6,1 and 6, is the largest
Suslin cardinal. Basic terminology and definitions concerning hod mice are taken from [5, [7].

Definition 0.1 Strong Mouse Capturing (SMC) is the statement that for any hod pair or an sts hod
pair (P,X) such that T has strong branch condensation and is strongly fullness preserving, and for any
reals x,y, x is ordinal definable from T and y if and only if x is in some X-mouse over y.

Definition 0.2 #, is the statement: there is a pointclass I' C p(R)) such that L(I',R) £ LSA and there
is a Suslin cardinal bigger than w(I').

We show

Theorem 0.3 Assume AD*+ V = L(p(R) + —#;,,. Then the Strong Mouse Capturing holds.

1 Outline of the proof

Towards a contradiction assume that SMC is false. Our first step is to locate the minimal level of the
Wadge hierarchy over which SMC becomes false. For simplicity we assume that the Mouse Capturing,
instead of the Strong Mouse Capturing, is false. Mouse Capturing is the same as SMC when the pair
(P, %) = 0. The general case is only different in one aspect, it needs to be relativized to some strategy or
a short tree strategy X.

Let I be the least Wadge initial segment such that for some «

1. T = p(R)N L,(T,R),
2. L,(I',R) E SMC,
3. there are reals x and y such that L1 (I',R) E “y is OD(x)" yet no x-mouse has y as a member.

See [5] for definitions of B(Q ™, Xg-), B(P, ), strongly guided etc.

Definition 1.1 Suppose (P,X) is a hod pair and T'* is a projectively closed pointclass. We say (P,X) is
[-perfect if the following conditions are met.

1. X is I -strongly fullness preserving and has strong branch condensation.

2. Forevery Q € pI(P,X) U pB(P,X) such that Q is of successor type, there is B=Bi:i<w)C
B(Q~, 2q-) such that B strongly guides Zq.

IfT* = p(R) then we omit I'* from our notation. 4

The following theorem was heavily used in [4]. It is essentially due to Steel and Woodin (see [2]).



Theorem 1.2 Assume AD" and suppose (P,X) is a hod pair or an sts hod pairﬂ (or an anomalous
pair) such that L(Z,R) £ “(P, %) is perfect”. Then L(Z,R) £ MC(X). Furthermore, for every R <} . P,
L(Z,R) £ MC(Zg).

A key theorem used in the proof of Theorem [0.3]is the following capturing theorem. Its precursor is
stated as [4, Theorem 6.5].

Theorem 1.3 Suppose (P,X) is a perfect hod pair and I'y is a good pointclass such that Code(Z) € Ar,.
Suppose F is as in Theorem @ for I't and z € dom(F) is such that if F(z) = (N}, M;,6,,X;) then
(N7}, 6., ;) Suslin, co-Suslin captures Code(Z Let N = (Le(@))Nz*! Then there is Q € pl(P,Z2)NN
such that g [ N € LIN].

The next key lemma that is used in the proof of Theorem [0.3]is the following generation lemma that
can be traced to [5, Lemma 6.23]. Below I is as above.

Lemma 1.4 There is a perfect pair (P, X) such that
I'P,2)crl C LE,R).

Suppose now that (P, X) is a I'-perfect pair such that I'(P,%) C I' € L(Z,R). Such a pair is given to
us by Lemmal(T.4]

We now apply Theorem For each Q € pI(P,X) there is a Zg-mouse Mg over (Q, x) such that
y is definable over Mg. We then again can find an x-mouse N such that for some Q € N N pI(P,X),
Mq € N. It follows that y € N. Thus, to finish the proof of Theorem it is enough to establish
Theorem [[.3]and Lemma[L.4l

2 I'-Woodin mice

We recall the definition of a good pointclass (see [14, Definition 9.12]). Unlike [14} Definition 9.12] we
include scale property into the definition of good pointclass.

Definition 2.1 We say I is a good pointclass if T is closed under recursive substitutions, is closed under
quantification over w, is closed under existential quantification over R, is w-parametrizeaﬁ and has the
scale property. -

Suppose I' is a good pointclass. For x € R, we let Cr(x) be the largest countable I'(x)-set of reals.
For transitive a € Hqﬂ and surjection g : w — a, we let ag be the real coding (a, €) via g. More precisely,

ag(k) ={1 :k=2"3"and g(m) € g(n)
0 : otherwise. Clearly M,, = (a,€). If b C a, then we let b, = {m : g(m) € b}. We then let

Cr(a) = {b C a : for comeager many g : w — a, by € Cr(ay)}.
Continuing with I', we say P is a ['-Woodin if there is a P-cardinal p such that

'In the case (P,X) is an sts pair and there is no Suslin cardinal above T (like in the minimal model of LSA and
¥ has Wadge rank the largest Suslin cardinal), we only can prove sommething like the "Furthermore" clause. More
precisely, the proof shows that for any (Q,A) € I°(P,X) (see [7] for this notation), L(Ag,R) E “forany Rslzonb R
MC(Ag)”.TheproofalsoshowsthatL(Z, R) £ MC(Z) if there is a Suslin cardinal above X in the model.

2We abuse the terminology and omit the other object used to express this type of capturing. In the sequel, if the nature of
these other objects, like the pair (N, V'), is not important we will omit them from the discussions.

3This is just the ordinary fully backgrounded construction.

4This means that there is U Cw X Rsuchthat U e Tand {A CR: A €T} ={U, : e € w}.

SHC is the set of hereditarily countable sets.



1. P is countable,

2. P = Cr(Cr(VE)).

3. Pk “0p is the only Woodin cardinal" and

4. forevery n < P, Cr(Vy) F “n is not a Woodin cardinal".
We say (P, V) is a [-Woodin pair if

1. W is an w-iteration strategy for P and

2. for every W-iterate Q of P, Qis a F—Woodirﬁ

Woodin, assuming AD*, showed that if " is a good pointclass not closed under ¥* then there are I'-
Woodin pairs (see [[14, Theorem 10.3]).

Suppose I' is a good pointclass and (P, V) is a '-Woodin pair. Let Ly be the extension of the
language of set theory obtained by adding one predicate symbol ¥ and one constant symbol e. The
intended interpretation of ¥ is Code(¥). e wlll denote a real number. Given u € R, we define T/ (¥, u)
to be the set of (¢, ¥) such that ¢ is a X,-formula in Ly, ¥ € R™ where m is the number of free variables
of ¢ and

(HC, Code(¥), u, €) £ ¢[X].

Welet 7,(¥) = T,(¥,0).

Next we code T, (¥, u) by a set of reals as follows. First let Gy be the set of natural numbers that
are Godel numbers for Ly-formulae. We say y € R is W-appropriate if y(0) is a Godel number of an Ly
formula. If y is W-appropriate then we let ¢, be the formula that y(0) codes and [, be the number of free
variables of ¢,. Let (p; : i < w) be the sequence of prime numbers in increasing order. For i < [, let
v; € R be such that for all k € w, y;i(k) = ¥( pi.‘”). If y is W-appropriate then we say y is neat if for all £’
such that ¥’ # 0 and k" ¢ { pf.‘ 11 < Iy ANk € w}, y(k') = 0. Let then T,,(‘¥, u) be the set of ¥-appropriate
neat y € R such that

(¢y, merge(y; : i < 1)) € T, (¥, u).

Again, set T,(W) = T,,(‘¥, 0).

Suppose z € R, ¢ is an Ly-formula with [ + 1 free variables and (x; : 2 <i <) e R™. Letyp € R be
such that yg(0) is the Godel number of ¢ and for i > 0, yp(i) = 0. Lety; = zand for2 <i <[, y; = x;.
Set a(¢, z, ¥) = merge((y; : i < 1)). Notice that (¢, z, X) is uniquely determined by a(¢, z, X). In fact, the
function (¢, z, ¥) > a(¢,z, X) is a H(l) injection.

Assuming AD, if A C R then w(A) is its Wadge rank, and if I is a pointclass then w(I") = sup{w(A) :
AeT}.

Notation 2.2 Suppose I is a pointclass closed under continous preimages and A C R. We say A is a
least upper bound for T if I = {B C R : w(B) < w(A)}. Set then lub(I') = {A C R : A is a least upper
bound for T'}. 4

Definition 2.3 Suppose T is any pointclass closed under the continuous preimages. We say that the
tuple M, (P, V), I'*, A) Suslin, co-Suslin captures I if the following conditions hold.:

1. A € lub(),

6P is a coarse structure, there is no notion of dropping for iterations of P, so P-to-Q embedding always exists.



2. T is the least good pointclass such that I C Ar-.

3. (P,Y) is a I'*-Woodin pair.

N

. (P,6p, YY) Suslin, co-Suslin captures A.

“

M is a self-capturing background as defined in [7, Definition 4.1.5].
6. M Suslin, co-Suslin captures the sequence (T,(¥) : n < w).

_|

Notation 2.4 Suppose U is a pointclass closed under the continuous preimages, C = M, (P, ¥),I'", A)
Suslin, co-Suslin captures T and M = (M,.,Gi Y). If N is a X-iterate of M then we set Cy = My, (P, V), T, A).
_{

Terminology 2.5 We say that “g is < n-generic" to mean that the poset for which g is generic has size
< n. Similarly we say that “g is < n generic" to mean that the poset for which g is generic has size < 1.
_|

Lemma 2.6 (Correctness of backgrounds) Suppose (M, (P,¥), T, A) Suslin, co-Suslin captures I and
set M = (M’:é’ ). Suppose x e RN M. Let (S, U, : n < w) € M be the sequence of trees on w X (61)M
such that (S, U,) Suslin, co-Suslin captures T,(\Y). Let g be < §-generic over M. Then for any real
ue M[gl,

(HCMI8l Code(¥) N Mg, u, €) < (HC, Code(P), u, €).

Self-capturing backgrounds are very useful for building hod pairs and proving comparison. The
following theorem of Woodin shows that under AD*, self-capturing backgrounds are abundant.

Theorem 2.7 (Woodin, Theorem 10.3 of [14]) Assume AD*. Suppose I is a good pointclass and there
is a good pointclass I'* such that I C Ar-. Suppose (N,¥) is I'*-Woodin which Suslin, co-Suslin captures
some A € lub(I'). There is then a function F defined on R such that for a Turing cone of x, F(x) =
(N7, My, 6x, ) is such that

1. Ne€L[x],
2. N;léx = Mx|6x»

3. M, is a Y-mouse over x: in fact, M, = M\IP’#(x)IKx where k. is the least inaccessible cardinal of
M‘I{"#(x) that is > 6,

4. N} E “6x is the only Woodin cardinal”,
5. X, is the unique iteration strategy of My,

6. Ni = LMy, A) where A = X, | dom(A) and

dom(A) = {7 € M, : T is a normal iteration tree on My, Ih(T") is a limit ordinal and T is
below 6.},

7. setting G = {(a, E)N:(a)) NLE “lh(E)N:(a)) is an inaccessible cardinal < 6,”} and M, =
(NE, 6y, é 20, My, (N, W), I, A) Suslin, co-Suslin captures

"Hence, (N7, 5,, @, ¥,) is a self-capturing background.



3 Hod mice

For hod mice below ADr+® is regular, the definition of hod mice is given in [5]. Let us mention some
basic first-order properties of a hod premouse $. There are an ordinal A* and sequences {(P(a), Zf) la <
A%y and (6% | @ < A%) such that

1. <6§ la < 2Py is increasing and continuous and if « is a successor ordinal then P £ 6?; is Woodin,;

2. every Woodin cardinal or limit of Woodin cardinals of # is of the form &”, for some «;

3. P(0) = Lp,(Pl6o)”; for @ < A2, Pla + 1) = (Lpiff(ﬂaaﬂ))?’ for limit @ < A, P(a) =
BpcaXl
(Lpy " (PI6)";

4. Pk 25 is a (w, o(P), o(P)ﬂstrategy for (@) with hull condensation;
5. if @ < B < A” then X} extends X7,.

We will write 6* for 6’;, and 2¥ = Bp< APZ’Z). Note that P(0) is a pure extender model. Suppose # and
Q are two hod premice. Then P <4 Q if there is a < A9 such that P = Q(a). We say then that  is a
hod initial segment of Q. We say (P,%) is a hod pair if P is a hod premouse and X is a strategy for £
(acting on countable stacks of countable normal trees) such that Y% C ¥ and this fact is preserved under
X-iterations. Typically, we will construct hod pairs (£, X) such that X has hull condensation, (strong)
branch condensation, and is (strongly) I'-fullness preserving for some pointclass I'.

We say that M is a minimal model of LSA if

1. M e LSA,
2. M =L(A,R) for some A C R, and
3. for any B € p(R) N M such that w(B) < w(A), L(B,R) £ =LSA.

It makes sense to talk about “the" minimal model of LSA. When we say M is the minimal model of LSA
we mean that M is a minimal model of LSA and Ord,R C M. Clearly from the prospective of a minimal
model of LSA, the universe is the minimal model of LSA. The proof of [[7, Theorem 10.3.1] implies that
there is a unique minimal model of LSA such that Ord,R C Mm This unique minimal model of LSA is
the minimal model of LSA.

One of the main contributions of [7] is the detailed description of Vg OD assuming that the universe
is the minimal model of LSA. The early chapters of [7] deal with what is commonly referred to as the
HOD analysis. These early chapters introduce the notion of a short-tree-strategy mouse, which is the
most important technical notion studied by [7]. To motivate the need for this concept, we first recall
some of the other aspects of the analysis.

Recall the Solovay Sequence (for example, see [15, Definition 0.9] or [[16, Definition 9.23]). Recall
that O is the least ordinal that is not a surjective image of the reals. The Solovay Sequence is a way of
measuring the complexity of the surjections that can be used to map the reals onto the ordinals below @.
Assuming AD, let (6, : @ < Q) be a closed in ® sequence of ordinals such that

1. 6y is the least ordinal 7 such that R cannot be mapped surjectively onto i via an ordinal definable
function,

8¢9(a + 1) is a (g-organized) Z,-premouse in the sense defined above.

This just means =¥ acts on all stacks of w-maximal, normal trees in .

10This proof of [[7, Theorem 10.3.1] shows that the common part of a divergent models of AD contains a minimal model of
LSA.



2. fora + 1 < Q, fixing a set of reals A such that A has Wadge rank 6,, 6,41 is the least ordinal
such that R cannot be mapped surjectively onto i via a function that is ordinal definable from A,

3. for limit ordinal 2 < €, Oj=gyp,_, 4, and
4. Qs least such that g = ©.

It follows from the definition of LSA that if « is the largest Suslin cardinal then it is a member of the
Solovay Sequence. It is not hard to show that LSA is a much stronger axiom than ADg + “® is regular”.
Under LSA, letting « be the largest Suslin cardinal, there is an w-club C C « such that for every 1 € C,
L(T3,R) E “ADg + A = @ + @ is regular”, where Ty = {A C R : w(A) < 4}[1]

Assume now that V is the minimal model of LSA. It follows from the work done in [7] that for every
k that is a member of the Solovay Sequence but is not the largest Suslin cardinal there is a hod pair
(P, %) such that

1. the Wadge rank of X (or rather the set of reals coding X) is > « and

2. for some 1 € P, letting Mo (P, X) be the direct limit of all countable Z-iterates Q of ¥ such that
the iteration embedding 71?, q 1s defined and letting n;v‘, w - P = Mu(P. ) be the iteration map,
then V9P is the universe of M (P, Z)|n2 oo(77

A technical reformulation of the above fact appears as [7, Theorem 7.2.2].

The situation, however, is drastically different for the largest Suslin cardinal. Let « be the largest
Suslin cardinal. The inner model theoretic object that has Wadge rank « cannot be an iteration strategy.
This is because if X is an iteration strategy with nice properties like hull condensatiorﬁ then assuming
AD holds in L(Z,R), L(Z,R) E “Mﬁ’z exists and is wl—iterable' This then easily implies that X is both
Suslin and co-Suslin. It then follows that no nice iteration strategy can have Wadge rank > «, as any
such strategy is both Suslin and co—Suslilﬁ

The inner model theoretic object that has Wadge rank « is a short tree strategy, which is a partial
iteration strategy. Suppose ¥ is any iterable structure and X is its iteration strategy. Suppose J is a
Woodin cardinal of . Given 7 € dom(X) that is based on P|d, we say that 7 is X-short if letting
X(7") = b, either the iteration map 71'2- is undefined or nZ(é) > 0(7). If 7 is not X-short then we say that
it is X-maximal. We then set 2 be the fragment of X that acts on short trees.

Following [[7, Definition 3.1.4] we make the following definition.

Definition 3.1 Suppose T is a normal iteration tree of limit length. We then let
m(7) = UgaeyMZ Th(ED) and m™(77) = (m(7))".

In the language of the above definition, the convention used in [[7]] is the following: (7)) = b if
and only if

1. 7 is X-short and X(7°) = b, or

"'This theorem is probably due to Woodin. The outline of the proof is as follows. By an unpublished theorem of Woodin
(but see [6, Theorem 1.9]), x is a measurable cardinal, as it is a regular cardinal. It follows that there is an w-club C consisting
of members of the Solovay sequence such that for all 2 € C, HOD k “2 is regular”. Hence, L(I'),R) £ “ADg + 1 = ® + @ is
regular". For the proof of the last inference see [1, Theorem 2.3].

2Thus, 7 (1) = K.

3% must also satisfy some form of generic interpretability, i.e., there must be a way to interpret ¥ on the the generic
extensions of Mﬁ’z.

'4This can be proved by a 3-reflection argument.

131t follows from the theory of Suslin cardinals under AD that x cannot be the largest Suslin cardinal, see [?, Chapter 3].



2. 7 is Z-maximal and b = m* (7).

Thus, % tells us the branch of a X-short tree or the last model of a £-maximal tree.

The reader can perhaps imagine many ways of defining the notion of short tree strategy without a
reference to an actual strategy. The convention that we adopt here is the following. If A is a short tree
strategy for $ then we will require that

1. for some P-cardinal 6, P = (P|6)* and P £ “6 is a Woodin cardinal",

2. if § is as above and v is the least < ¢-strong cardinal of $ then # £ “v is a limit of Woodin
cardinals",

3. given an iteration tree 7 € dom(A), A(7") is either a cofinal well-founded branch of 7 or is equal
tom™ (7)),

4. for all iteration trees 7 € dom(A), if A(7") is a branch b then nZ(é) > o0(7),
5. for all iteration trees 7~ € dom(A), if A(T") is a model then m*(7) £ “6(7") is a Woodin cardinal".

If a hod mouse P has properties 1 and 2 above then we say that P is of #-Isa type. [7, Definition 2.7.3]
introduces other types of LSA hod premice.

The set of reals that has Wadge rank « is some short tree strategy A. The hod mouse ¥ that A
iterates has a unique Woodin cardinal ¢ such that if v < ¢ is the least cardinal that is < J-strong in P,
then P £ “v is a limit of Woodin cardinals". The aforementioned Woodin cardinal ¢ is also the largest
Woodin cardinal of #. This fact is proven in [7]] (for example, see [7, Theorem 7.2.2] and [7, Chapter
8]). There is yet another way that the LSA stages of the Solovay Sequence are different from other
points.

We continue assuming that V is the minimal model of LSA. If X is a strategy of a hod mouse
with nice properties then ordinal definability with respect to X is captured by X-mice. More precisely,
[7, Theorem 10.2.1] implies that if x and y are reals then x is ordinal definable from y using X as a
parameter if and only if there is a X-mouse M over y[f] such that x € M.

[7, Theorem 10.2.1] also implies that the same conclusion is true for short tree strategies. Namely,
if A is a short tree strategy then for x and y reals, x is ordinal definable from y using A as a parameter
if and only if there is a A-mouse M over y such that x € M. Theorems of this sort are known as
Mouse Capturing theorems. Such theorems are very important when analyzing models of determinacy
using inner model theoretic tools.

For a strategy X the concept of a X-mouse has appeared in many places. The reader can consult [}
Definition 1.20] but the notion probably was first mentioned in [[12] and was finally fully developed in
[9].

A X-mouse M, besides having an extender sequence also has a predicate that indexes the strategy.
The idea, which is due to Woodin, is that the strategy predicate should index the branch of the least tree
that has not yet been indexed.

Unfortunately this idea doesn’t quite work for A-mice where A is a short tree strategy. In the next
subsection, we will explain the solution presented in [7]].

19The difference between a mouse and a mouse over y is the same as the difference between L and L[x].



3.1 Short tree strategy mice

We are assuming that V is the minimal model of LSA. Suppose A is a short tree strategy for a hod mouse
P. We let 6 be the largest Woodin cardinal of . Thus, P = (Plo)*.

In general, when introducing any notion of a mouse one has to keep in mind the procedures that
allow us to build such mice. Formally speaking, many notions of A-mice might make perfect sense, but
when we factor into it the constructions that are supposed to produce such mice we run into a key issue.

In any construction that produces some sort of mouse (e.g. K¢-constructions, fully backgrounded
constructions, etc) there are stages where one has to consider certain kinds of Skolem hulls, or as inner
model theorists call them fine structural cores. The reader can view these cores as some carefuly defined
Skolem hulls. To illustrate the aformentioned problem, imagine we do have some notion of A-mice
and let us try to run a construction that will produce such mice. Suppose 7 is a tree according to A
that appears in this construction. Having a notion of a A-mouse means that we have a prescription for
deciding whether A(7") should be indexed in the strategy predicate or not.

Suppose 7 is a A-maximal tree. It is hard to see exactly what one can index so that the strategy
predicate remembers that / is maximal. And this “remembering" is the issue. Imagine that at a later
stage we have a Skolem hull 7 : M — N of our current stage such that 7~ € rng(m). It is possible
that U =4.r n~!(7) is A-short. If we have indexed X in our strategy that proves A-maximality of 7
then 7~ !(X) now can no longer prove that U is A-maximal. Thus, the notion of A-mouse cannot be first
order.

The solution is simply not to index anything for A-maximal trees. This doesn’t quite solve the
problem as the above situation implies that nothing should be indexed for many A-short trees as well.
To solve this problem, we will only index the branches of some A-short trees, those that we can locally
prove are A-short. We explain this below in more details.

Fix an Isa type hod premouse # and let A be its short tree strategy. Let ¢ be the largest Woodin
cardinal of £ and v be the least < §-strong of . To explain the exact prescription that we use to
index A, we explain some properties of the models that have already been constructed according to this
indexing scheme. Suppose M is a A-premouse.

Call 7 € M universally short (uvs) if 7 is obviously short (see [7, Definition 3.3.2]). For instance,
it can be that the #-operator provides a Q-structure and determines a branch ¢ of 7 such that Q(c, 7
exists and Q(c, 7)) < m*(7). Another way that a tree can be obviously short is that there could be a
model Q in 7 such that n;Q : P — Q is defined and the portion of 7 that comes after Q is based on
Q. Here @ is defined as Q|(x*)?, where « is the supremum of the Woodin cardinals below the largest
Woodin of Q. The reader should keep in mind that there is a formula { in the language of A-premice
such that for any A-premouse M and for any iteration tree 7 € M, 7 is uvs if and only if M & Z[T].

Unfortunately there can be trees that are not universally short (nuvs). Suppose then 7~ is nuvs.
In this case whether we index A(7") or not depends on whether we can find a Q-structure that can be
authenticated to be the correct one. There can be many ways to certify a Q-structure, and [7]] provides
one such method. An interested reader can consult [7, Section 3.7]. Notice that because # has only
one Woodin cardinal, not being able to find a @-structure is equivalent to the tree being maximal. Thus,
in a nutshell the solution proposed by [7] is that we index only branches that are given by internally
authenticated @-structures.

Suppose now that we have the above Skolem hull situation, namely that we have 7 : M — N and
7 in N that is A-maximal but 77'(7") is short. There is no more indexing problem. The reason is

"M is a direct limit along the models of ¢. Q(c,7") is the largest initial segment of M such that Q(c,7) £ “(7) is a
Woodin cardinal". It is only defined provided that (7) is not a Woodin cardinal for some function definable over M.



that in order to index A(zx~!(77)) in M we need to find an authenticated Q-structure for 77! (77). The
authentication process is first order, and so if A does not have such an authenticated Q-structure for 7~
then M cannot have such an authenticated Q-structure for 7~ (7).

The authentication procedure is internal to the mouse. More precisely, the following holds:

Internal Definability of Authentication: there is a formula ¢ in the appropriate language such that
whenever (P, A) is as above and M is a A-mouse over some set X such that $ € X, for any iteration tree
T e M, M ¢[T]if and only if T € dom(A), T is short and A(T") € M.

We again note that the Internal Definability of Authentication (IDA) is only shown to be true for the
minimal model of LSA. In general, IDA cannot be true as there can be short trees without Q-structures.
The authors have recently discovered another short tree indexing scheme that can work in all cases, but
has some weaknesses compared to the one introduced in [7]].

Using the notation in [7], recall that Pt is the “bottom part" of P, i.e PP = P|(vH)?, where v is the
supremum of the Woodin cardinals below the top Woodin of #.

We now describe another key feature of the indexing scheme of [7]] that is of importance here. We
say X is a low level component of A if there is a tree 7 on P according to A such that 77 * exists{g]
(7 may be 0) and for some R < a7 bPh), ¥ = Ag. Let LLC(A) be the set of X that are a low level
components of A. What is shown in [7] is that A is determined by LLC(A) in a strong sense.

Given a transitive model M of a fragment of ZFC such that # € M we say M is closed under
LLC(A) if whenever 7~ € M is a tree according to A such that 77 * exists, A7 bpry has a universally
Baire representation over M. More precisely, whenever g C Coll(w,n” *(P)) is M-generic, for every
M-cardinal A there are trees T, S € M[g] on A such that M[g] x “(T,S) are < A-complementing" and for
all < A-generics h, (p[T)M&1 = Code(Arbpry) N Mg+ h]. Here Code(®) is the set of reals coding ©
(with respect to a fixed coding of elements of HC by reals).

It is shown in [7] that if, assuming AD*, (M, X) is such that

1. M is a countable model of a fragment of ZFC,
2. M has a class of Woodin cardinals,
3. X is an wq-iteration strategy for M and
4. whenever i : M — N is an iteration via X, N is closed under LLC(A),
then there is a formula ¢ such that whenever g is M-generic, for any 7 € M|g],
7 is according to A if and only if M[g] k Y[7T]. (%)

The interested reader can consult Chapters 5, 6 and 8 of [7]].

The reason we explained the above is to give the reader some confidence that defining a short tree
strategy A for a hod premose % is equivalent to describing the set LLC(A). This fact is the reason that
the indexing schema of [7] works in the following sense.

Being able to define short-tree-strategy mice is one thing, proving that they are useful is another.
Usually what needs to be shown are the following two key statements. We let ¢ be the formula that is
mentioned in the Internal Definability of Authentication.

187274 is the restriction of the iteration embedding to P*. See [7]], just after Definition 2.7.21, for a more detailed definition.

T b

Note that in some cases, 7”7 * may exist but 77 may not.



The Eventual Authentication. Suppose (P, A) is as above and M is a sound A-mouse over some
set X such that € X and M projects to X. Suppose 7 € M is according to A and is A-short. Suppose
further that M £ —¢s[7]. Then there is a sound A-mouse N over X such that M<N and N E ¢ [T ]E]

Mouse Capturing for A: Suppose (£, A) is as above. Then for any x € R that codes £ and any
y € R, y is ordinal definable from x and A if and only if there is a A-mouse M over x such that y € M.

Both The Eventual Authentication and Mouse Capturing for A are proven in [7] (see [7, Chapter 8§,
Lemma 8.1.3, Lemma 8.1.5] and [/, Theorem 10.2.1]).
The next subsection discusses the Q-structure authentication process mentioned above.

3.2 The authentication method

Suppose P is a #-1sa type hod premouse. Recall from the previous subsections that this means that
has a largest Woodin cardinal & such that # = (P|6)* and the least < §-strong cardinal of # is a limit
of Woodin cardinals. We let 6” be the largest Woodin cardinal of # and «* be the least < ¢”-strong
cardinal of . We shall also require that P is fame, meaning that for any v < 67, if (P|v)* is of Isa type
and M < P is the largest such that M k “v is a Woodin cardinal” then v is not overlapped in /\/@

Our goal here is to explain the Q-structure authentication procedure employed by [7]. Recall our
discussion of uvs and nuvs trees. The @-structure authentication procedure applies to only nuvs trees,
trees that are not obviously short.

[7, Chapters 3.6-3.9] develop the aforementioned authentication procedure. [/, Definition 3.8.9,
3.8.16, 3.8.17] introduce the sts indexing scheme. For illustrative purposes, it is better to think of the
indexing scheme introduced there as a hierarchy of indexing schemes indexed by ordinals. Naturally,
this hierarchy is defined by induction. For illustrative purposes we call yth level of the hierarchy sts, .
Thus, sts,(P) is the set of all sts premice that are based on ¥ (i.e., their short tree strategy predicate
describes a short tree strategy for ) and have rank < .

To begin the induction, we let stso(#) be the set of all sts premice that do not index a branch for any
nuvs tree. More precisely, if M € stso($) and T € dom(S M) then if SM(7) is defined then 7 is uvs.

Below and elsewhere, S™ is the strategy predicate of M. Given sts,(P) we let stsq.1(P) be the
set of all sts premice that index branches of those nuvs trees that have a @-structure in sts,(#). More
precisely, suppose M € stsq+1(P) and T € dom(S My and SM(7) is defined. Then either

1. 7 is uvs or

2. T is nuvs and there is @ € M such that M £ “Q € sts5,(P)”, m*(T) <« Q, Q £ “6(7") is a Woodin
cardinal” but 6(7") is not a Woodin cardinal with respect to some function definable over qzrl and
there is a cofinal branch b of 7~ such that Q < MZ.

When @ exhibits the properties listed in clause 2 we say that Q is a @-structure for 7. It follows from
the zipper argument of [3, Theorem 2.2] that for each Q-structure Q there is at most one branch b with
properties described in clause 2 above. However, there is nothing that we have said so far that guarantees
the uniqueness of the Q-structure itself. The uniqueness is usually a consequence of iterability and

9One can then prove that there is such an AV that projects to X.
20This means that if £ € EM then v ¢ (crit(E), index(E)).
2IThis can be written as 7 (Q) E “6(7) is not a Woodin cardinal”.



comparison (see [[15, Theorem 3.1 1]@ Thus, to make the definition of sts,.; complete, we need to
impose an iterability condition on Q.

The exact iterability condition that one needs is stated as clause 5 of [[7, Definition 3.8.9]. This clause
may seem technical, but there are good reasons for it. For the purposes of identifying a unique branch b
saying that Q in clause 2 is sufficiently iterable in M would have sufficed. However, recall the statement
of the Internal Definability of Authentication. The problem is that when we require that an M as above
is a A-premouse we in addition must say that the branch b that the @-structure Q defines is the exact
same branch that A picks. To guarantee this, we need to impose a condition on Q such that Q will be
iterable not just in M but in V. The easiest way of doing this is to say that @ has an iteration strategy
in some derived model as then, using genericity iterations (see [[15, Chapter 7.2]), we can extend such a
strategy for Q to a strategy that acts on iterations in V.

For limit a, stso(P) is essentially (g, stsp(). What has been left unexplained is the kind of
strategy that the Q-structure @ must have in some derived model. Let X be this strategy. If M € sts,(P)
is a A-mouse then Q must be a Ap+¢-mouse over m* (7). Thus, our next challenge is to find a first
order way of guaranteeing that Z-iterates of Q are Ap+¢)-mice, even those iterates that we will obtain
after blowing up X via genericity iterations.

The solution that is employed in [[7] is that if R is a Z-iterate of Q and U € dom(S R) then U itself
is authenticated by the extenders of M. Below we refer to this certification as tree certification. This is
again a rather technical notion, but the following essentially illustrates the situation.

Let us suppose R = Q and U € dom(S?). The indexing scheme of [[7] does not index all trees in P.
In other words, SM is never total. dom(S™) consists of trees that are built via a comparison procedure
that iterates ¥ to a background construction of M. Set N = m* (7). One requirement is that A also
iterates to one such background construction to which ¥ also iterates. Let S be this common background
construction and suppose a+ 1 < [h(U) is such that « is a limit ordinal. First assume U | « is uvs. What
is shown in [7] is that knowing the branch of P-to-S tree there is a first order procedure that identifies
the branch of U | @, and that procedure is the tree certification procedure applied to U | a.

Suppose next that U | « is nuvs. Then because @ + 1 < [h(U), U | « must be short and the
branch chosen for it in @ must have a @Q-structure Q; which is itself an sts mouse. We have that @, € Q
and @ must have the same certification in Q that Q has in M. Again, the nuvs trees in @Q; have a tree
certification in @ according to the above procedure. The uvs ones produce another @, € Q. Because
we cannot have an infinite descent, the definition of tree certification is meaningful.

Remark 3.2 It is sometimes convenient to think of a short tree strategy as one having two components,
the branch component and the model component. Given a short tree strategy A, we let b(\) be the set
of those trees T € dom(A) such that A(T") is a branch of T, and we let m(A) be the set of those trees
T € dom(A) such that A(7") is a model.

The convention adopted here is that if T € m(A) then A(T) = m* (T ﬂ Thus, if M is an sts
premouse then S™M is a short tree strategy in the above sense, i.e., for T ¢ b(SM), SM(T) is simply left
undefined.

2In general, the theory of Q-structures doesn’t have much to do with sts mice. It will help if the reader develops some
understanding of [15 Chapter 6.2 and Definition 6.11].
231t is not up to us to decide whether A(7) € m(A) or A(7") € b(A). The short-tree strategy itself decides this.



4 Proof of Theorem 1.2

We assume (P, X) is a hod pair or a sts hod pair. Recall the terminology of meek, etc associated with

hod premice from [7].
1. (Meek) There is 6 such that

(a) P E “61is a Woodin cardinal or a limit of Woodin cardinals",
(b) ¢ is a cutpoint of ?’@
(c) if k < ord(?P) is a limit of Woodin cardinals of P then o”'(x) < 6,
(d) P e ZFC — Replacement and
(e) if 6 is a Woodin cardinal of £ then P = |, P|(6*)7, and if ¢ is a limit of Woodin cardinals
of P then ¢ is the largest cardinal of P.
2. (Non-meek) There is 6 < ord(#) such that

(a) there is k < & such that 6 < 0% (x),

(b) if « is the least n < ¢ such that § < o” (1) then 0” (k) = ¢ and P E “k is a limit of Woodin
cardinals",

(c) letting k < & be the least such that 0o”’ (k) = 6, p(P) € (k,d] or ord(P) is a limit of ordinals &
such that p(P||(¢, w)) € (x, 0].

(d) P is 6-sound,
(e) if dom(E”) N (6%, ord(P)] = 0 then J,[P] £ “6” is not a Woodin cardinal”.

3. (Gentle) ¢ =4, ord(%) is a limit of Woodin cardinals of  and £ ZFC — Replacement.
We let 6” be the § above. We say P is of Isa type if

1. P is properly non-meek,

2. Pk “6” is a Woodin cardinal”

Leta = min(dom(ﬁp) —6%) (if exists). We then say that P is of #-lIsa type if P|lo = P and T, [P] £ “6”
is a Woodin cardinal". We say P is of successor type if P is meek and & = 6* is a Woodin cardinal in P.
We now recall fullness preservation and branch condensation.

Definition 4.1 (I'-Fullness preservation) Suppose (P,X) is a hod pair or an sts hod pai@ such that
P € HC and T is a projectively closed pointclass. We say T is I'-fullness preserving if the following
holds for all (T,Q) € I(P,X).

1. For all meek layers R of Q such that R is of successor type, letting S = Rﬁ for all n €
(ord(S), ord(R)) if n is a cutpoint cardinal of R then

RI@HR)* = Lp™s7 (R|5).

2. For all meek layers R of Q such that R is of limit type,

24This condition follows from the other conditions, but we would like to isolate it.
Z5Recall that if (P, Z) is an sts hod pair then P = (P|6”)*. See Definition ??.
26This is the longest proper layer of R.



R = Lp™RoR7 (R|6R).
3. If P is of #-Isa type then Lpr’zg} (Q) E “Q is a Woodin cardinal’

Definition 4.2 (Strongly I'-fullness preserving) Suppose (P,X) is a hod pair or an sts hod pair and I'
is a pointclass. We say X is strongly U-fullness preserving if Z is I-fullness preserving and whenever

1. T is a stack according to X with last model S such that if P is of limit type then n” * exists and

T

otherwise ’ exists, and

2. R is such that there are elementary embedding (o, T) with the property that
(a) if P is of limit type then o : P’ - R, 7 : R — Sl and 7" * = 10 0, and
(b) if P is of successor type then o : P - R 1: R - Sandn” =100,

then the t-pullback strategy of Xsv - if 2(a) holds and of s g if 2(b) holds is I'-fullness preserving.
Following Definition we can also define the meaning of strongly almost I'-fullness preserving as
well as the meaning of strongly low-level T'-fullness preserving. 4

The definition of branch condensation for strategies is standard and can be found in [5]. We define
branch condensation for st strategies.

Definition 4.3 (Branch condensation for st-strategies) Suppose (P,X) is such that P is a hod-like #-
Isa type Ises and X is a st-strategy for P. We say T has branch condensation if whenever (7,Q, U, R, 1, S, c, a, b)

is such that
L (T,Q),(U,R) € I"(P, %),
2. @ < 2% and SR js a Woodin cardinal of R,

3. S is a normal iteration tree of limit length according to Zgs q; that is based on R(a + 1) and is

‘R
above 67,
4. cis a branch of S such that ﬂf exists, and
5.7 MS — Qb) and 17 = 1o 1S o 7P

then ¢ = Zg 4(S). 4

We first prove:
Lemma 4.4 LZ,R)E MC(2).

Proof. For simplicity, we assume X = (. The general is only more notationally more complicated.
Suppose y € OD(x). Let 8 be the least such that y € ODP(x) i.e. there is a formula ¢ and some ﬁ € a™?
such that for all x,

T=x e JR) E ¢[T B, Al

By minimality of 3, § is a critical ordinal (cf. [13]). Suppose & is the least such that p;(Jg(R)) = R,

Jp(R) Jp(R)
then X, ., and I, /|

y € OD(x) as witnessed by a I" formula.

have the scale property. Let I' = ngl (5() for some sufficiently large n such that

?Here, if X is a short tree strategy then ¢ = .



Claim 4.5 There is a Turing cone of real z such that if u € ODP(2) as witnessed by a T-formula then
there is a z-mouse M such that u € M and M has an w-iteration strategy in Jg,1(R). In fact, the
operator z = Cr() is fine-structural as witnessed in Jg,1(R).

Proof. Tt suffices, by Rudominer-Steel (cf.[[10]), to show for any real y, there is y <7 x and an x-mouse
R such that Cr(x) € RN R and R is w;-iterable in Jg,1(R).

Let A be a universal I'-set and (M, 9, X) be a I'-Woodin mouse that Suslin captures A (as witnessed
by T,S) and that £ € Jg1(R) and M E “6 is Woodin." Let (N, : 1 < 6) be the models of the L[E, y]-
construction of M. Let m : M* — M be such that §,T € ran(r), ran(mr) N d = y € ¢, and vy is not
Woodin in N5 =4,y Q. Because S, T € ran(n), Cr(Qly) € M* and hence n is Woodin with respect to all
A € Cr(Qly). Let ¢ > y be the least such that there is a subset of y in Qly + 1 =4, ¥ but not in Cr(Qly).

Let x € R code a generic g € Col(w, Qly). So y <7 x and there is a b, € P[x] such that b, ¢ Cr(x).
P[x] can be re-arranged into an x-mouse R. Since R’s iteration strategy can be computed from #’s
strategy, R is iterable in Jg,1(R). This proves the claim. O

Since y € Cr(x), we want to show there is an x-mouse M iterable in Jg,1(R) such thaty € M. Let Be T’
and £ < w; be such that y is unique with (y, z, x) € B for any z coding &. Since I has the scale property

(Cr(x), BN Cr(x)) <z, (R, B).

We may also assume B codes the (2n + k)" -reduct of Jp(R), and therefore, the fact that (Cr(x), B N
Cr(x)) <x, (R, B) gives a X,,-elementary embedding

e JB(Cr(x)) — Jp(R)

for some 8 < 3. The above fact holds for any real z, not just x.

By the claim and its proof, fix z* such that for any z* <7 z, there is a z-mouse in Jg,(R) whose
reals are those in Cr(z). Let Q = E;‘; (ji)ﬂ and (M, 6,%) be a coarse Q-Woodin mouse in Jg,1(R) such
that z*, x € M. Let (N, : n < 6) be the models of the L[E, x]-construction in M. Let Q = N; and as
above, fix y < & < § such that Q|¢ projects to y and defines a subset of y not in Cr(Q|y U {x, z*}). Note
that P = Q|¢ £ “y is Woodin" and also that {x, z*} is P-generic over P, where P is the extender algebra
defined in P.

Let z code a Col(w, Qly U {x, z*)-generic. We can re-arrange $[z] into a z-mouse R as before. Note
that

Cr =RNR.
Since x <7 z, y € R. Furthermore, y is definable over J3(Cr(2) for some countable 3 and the least such

model is in R. So y is OD in R. Therefore, y € Q. O

Now we prove the theorem. Let R < ¥ be the least layer of . We want to show that

(1) L(Z,R) E “Mouse Capturing holds for Zg”.

The general case is only notationally more complex. Suppose x,y € R are such that L(Z,R) £ “y €
ODs,(x)”. It follows from Theorem that there is a X-mouse M over (P, x) containing y such that M
has an iteration strategy in L(Z, R). In fact, it follows from Theorem [I.2]that

(2) for every Q € pI(P,X) there is a Lg-mouse M over (@, x) such that y € M and M has an itera-
tion strategy in L(, R)F_g]

2This is because L(Zq, R) = L(Z,R) and L(Zq, R) £ MC(Zg).




Let Mg be the least Xg-mouse over (Q, x) such that y is definable over Mg. Let Agq be the iteration
strategy of Mg (witnessing that Mg is a Xg-mouse). Let [* € L(Z, R) be a good pointclass such that the
set

A = {(z,u) € R? : z codes some Mg and u is an iteration according to Ag)

is in Ar+. Let F be as in Theorem [2.7)for I and let z € dom(F) be such that if F(z) = (N7, M;,6,, %)
then (N7, 6;, Z;) Suslin, co-Suslin captures X and the set A. Let N' = (Le(0, x))N1% 1t follows from
Theorem [L.3] that

(3) thereisa @ € N such that g [ N € J[N].

It follows from the universality of AV that Mg € N (this is because (Le((Q, Zg))" is universal in N7 and
the strategy Aq of Mg is captured by N (via A)). It then follows that y € N. As N is an x-mouse, this
completes the proof.

Remark 4.6 The case (P,X) is anomalous is handled as in [5 Lemma 6.22]. The main issue is we
cannot use Theorem|[I.3]as (Q, 2q) need not be fullness preserving.

5 Proof of Lemma (1.4

Given a set of reals A C R, we let Wy = {B C R : w(B) < w(A)}. Next following Definition 3.13 of [4],
we say A C R is a new set if

1. L(A.R) £ AD*,
2. p(R) N L(W4,R) = Wy,
3. OLWaR) is a Suslin cardinal of L(A, R).

The following is [4}, Definition 3.17].

Definition 5.1 Given a pointclass I, we say T is completely mouse full if either I' = p(R) or there is a
new set A such that

1. T =Wy,

2. if (P,2) is allowable (see [7, Definition 3.10.7] such that Code(X) € T' and L(A,R) £ “X has
strong branch condensation and is U'-fullness preserving" then for every a € HC,

Lp"*(a) = (Lp* (@) 4.

Given two pointclasses I'y and I, we write I'y <pouse [2 if [T € I'y and I'; has the same mice as
Iy relative to common iteration strategies. More precisely, if (#,X) € I'y is an allowable pair such that
L2, R) k£ “X has strong branch condensation and is I';-fullness preserving" then for any a € HC,

Lp"1*(a) = Lp">*(a).



Finally, following [4), Definition 3.18],

Definition 5.2 I is mouse full if either it is completely mouse full or is a union of completely mouse full
pointclasses (I'y : a < QY such that for all @, Ty <pouse U'a+1 and for all limit a, T'y, = Uﬁm I

In this subsection we outline the proof of Lemma[I.4] Suppose that there is no hod pair or an sts hod
pair (P, X) such that

1. X has strong branch condensation and is strongly fullness preserving,
2. T'(P,2) cTI'C L(Z,R)

The following theorem is the key "Generation of Mousefull Pointclass" Theorem ([S, Theorem 6.1] and
[7Z, 10.1.2]). We operate under the assumption that there is no I" such that L(I', R) £ LSA but there is a
Suslin cardinal above w(I").

Theorem 5.3 (AD* +V = L(p(R))) Suppose I' € 9(R) is a mousefull pointclass such that T £ SMC.
Then there is a hod pair or sts hod pair or an anomalous pair (P, X) that generates F.@

Lemma 5.4 Suppose (P,X) € I is a hod pair such that £ has strong branch condensation and being
super fullness preserving. Then on a cone of z, Lp™(z) = Lp*(2).

Proof. Fix (P, %) € I' and suppose on a cone of z, there is M. <1Lp*(z) such that letting @, be the iteration
strategy of M, (as a X-mouse), @, ¢ T

Claim 5.5 y is in a X-mouse over (P, x). Furthermore, whenever (Q,Xq) € I(P,X), y is in a Xg-mouse
over (@, x).

Proof. Let I'* be a good, scaled pointclass such that Ar+ contains (R) N Ly4+1(I',R) and the function
z = O, Let (N7},0,,%;) Suslin, co-Suslin captures a universal I'* set (and other necessary sets like =
etc) for some z >7 x,y. Let (N, : @ < 6;) be the models in the L[E, Z][P, x]-construction of N and
N = Njs..

Let (0; : i < w) enumerate the first w Woodin cardinals of N and let A = sup;d;. Let M be the derived
model at A as computed in N [g] for some generic g € Col(w, < A). Let w € N} [g] code Nldo,g T do
and Nl6o, g | 6o codes w. There is some Q < N such that Q[w] is equivalent to M,, and that ®,, € M
and therefore (the interpretation of) I'is in M. So M k£ y € OD(x). This implies y € N as desired.

The furthermore clause is similar. O

Using the claim, we let for any (@, 2g) € I(P,X), Mg be the least Zg-mouse over (@, x) containing y
and @g be its strategy. Let AC R code the set {{(Mg, @g) : (Q,2Xg) € I(P,X)}.
Let I'* be a good pointclass such that X, x — Lp(x),A € Ar- and let u € R be such that (N

u’

Ous L)
Suslin captures a universal I set. Let NV be the last model of the L[E][x]-construction in N|6,. By
Theorem there is (@, Xq) € I(P,X) such that Zg [ N € L[N]. By universality of N, noting we can
compare Mg vs Nin N, Mq < N. Therefore, y € N. This contradicts our assumption that y does not
belong to any mouse over x.

O

Now we finish the proof of Lemmal|I.4] Let A be the set of hod pairs or sts hod pairs (P, X) such that
Code(Z) € I' and X has strong branch condensation and is strongly fullness preserving.

2%(#, £) may be anomalous as defined in [[5[7]. Here “generate” means: if (P, ) is a hod pair, then I'(P, X) = T and if (P, Z)
is an sts pair, then T*(P,X) =T.



Claim 5.6 A # 0. Furthermore, if (P,X) € A, then there is a hod pair (Q,A) € A such that A9isa
successor ordinal and (Q~,Ag-) € I(P, X).

Proof. To see A # 0. Let [” be a good pointclass such that Mice € Ar and there is sjs C=(Ci:i<
w) € A such that Cy = Mice. Note that by Lemma [5.4, Mice € I'. Let z be such that (N7,5,,X;)
Suslin, co-Suslin captures Mice and C as in Theorem hen the first model (P, o) of the hod pair
construction of N} exists. Let (P,X) = (o, o). We have that X is fullness preserving and has branch
condensation. Moreover, Code(X) € I'* as otherwise I' C L(Z,R). Hence, (P, X) € A.

Now suppose (P,X) € A. There is a 8 such that the hod pair construction of N (possibly a different
coarse Woodin mouse from the above) reaches a pair (Pg, X3) € I(P,X). The pair (Q, A) is the next hod
pair (Pg41, Z+1) in this construction. Such a pair exists provided

1. N1 doesn’t project across 678 =4, 7 0B,
2. if =7y + 1 then Ny k 0gis Woodin,
3. if B is limit, no levels of N, projects across dg and ((5;)/\//* = (6;)"0/3.

We can rule out each case by standard arguments (e.g. see the argument in the proof of [5, Theorem
6.1]). For example, if in (1), there is a level Q < N3, 1, that projects across dg, letting A be its strategy.
The key point is (@, A) is an anomalous hod pair; so using the proof of Lemma we can show
L(A,R) E MC(A) + VR <1ﬁOd P MC(AR). This allows us to analyze HOD of L(A,R) and show that letting
ACpi(R) < 6@ be X-definable over R from p;(R) and A ¢ R, then A € OD(Agp) = Zg. By MC(Z) in
L(A,R) and the fact that g < R is full, A € R. Contradiction. |

It follows from the above claim that if

[ = U g)ea [P, 2)

then

(1) T’y is a mouse full pointclass such that for some limit ordinal « there is a sequence of mouse full
pointclasses (I's : B < @) such that for < y < @, I'g <ouse I'y and 'y = Up<o I

It follows from Theorem [5.3| that there is a possibly anomalous hod pair (#, X) such that either
1. Pis of Isa type and I'’(P,X) =T or
2. Pisnot of Isa type and I'(P,Z) =T.

Because I' E SMC and because I'j <55 ©(R), we must have that X is strongly fullness preserving (for
instance see [4, Lemma 6.21]). Notice that we get a hod pair as opposed to an sts pair. This is because
we have good pointclasses beyond I'.

Notice also that Code(X) ¢ T, as otherwise it follows from the claim that (P, X) € A. Thus, it must
be the case that # is an anomalous hod premouse. We now get a standard contradiction as in the proof
of Theorem 6.1 of [4], where it is argued that the computation of HOD"*® gives a contradiction.

3For simplicity, assume p;(R) < dp.



6 Proof of Theorem

We outline the main ideas in the proof of Theorem [I.3]

6.1 Basic notions and main ideas

We are in fact working towards the proof of Theorem [1.3] and the notation and the terminology of
this subsection will be used in the later subsections. Fix (P,%), I';, F and z as in the statement of
Theorem Let N = (Le(0))N-. 4
Goal: We are looking for Q € pI(P,X) N N such that 29 [ N € J[N].

We start working in N;. Without loss of generality we can assume that

(1) whenever R € pB(P, %) N (N} |2) there is S e pI(R,2r) N N such that Xs [ N € J[N].

As in [4]], there are several cases.
1. P is of successor type.
2. P is of limit type and P is meek.
3. P is non-meek but P is not of #-Isa type.
4. (P,Z%) is an sts hod pair.

The first two cases are just like the cases considered in [4, Theorem 6.5], i.e. the “ADr+® is regular”
case. For the remaining two cases we need more ideas to be discussed below.

Definition 6.1 Suppose for a moment that we are working in some model of ZFC. Suppose « is an
inaccessible cardinal. We say that (Q, A) is a hod pair at « if

1. (@, A) is a hod pair,
2. Qe HP
3. Ais a (k, k)-iteration strategy,

4. Code(A) is a k-universally Baire set of reals.

Suppose (@, A) is a hod pair at k. Then we let
Lp™<(a) = |J{M : Mis a sound A-mouse over a such that p,,(M) = ord(a) and M < (Le((Q, A), a)"+}.

As is customary, we let Lpg *(a) be the ath iterate of Lp™*(a). Below S*(R) is the #-transform of S into
a hybrid mouse over R, it is defined when R is a cutpoint of S (cf. [8]]).

Definition 6.2 (Fullness preservation in models of ZFC) Suppose now that (P,%) is a hod pair at k.
We then say X is k-fullness preserving if the following holds for all (T,Q) € (P, X) N V,.

3'We will later apply this definition to Q which are not countable. The reason we make this assumption is so that we can
have clause 4 below. It follows that the current definition makes sense in a variety of situations, and in particular when clause
4 holds after collapsing Q to be countable.



1. For all meek layers R of Q such that R is of successor typePZl letting S = R‘@ for all n €
(ord(S), ord(R)) if n is a cutpoint cardinal of R then

(RIG")R)" = Lp=s7*(RI6).
2. For all meek layers R of Q such that R is of limit type,
R = Lp=ReRT*(R|SR).
3. If P is of #-Isa type then Lngf‘/"K(Q) £ “69 is a Woodin cardinal’

We continuing our work inside some model of ZFC.

Definition 6.3 (Universal tail) Suppose (Q, A) is a hod pair at k such that A has branch condensation
and is k-fullness preserving. Suppose A < « is an inaccessible cardinal. Then we say (Q°,N*) is a

A-universal tail of (Q, A) if there is a (possibly generalized) stack

on Q according to A with last model Q" such that In(7") = A and for any (S, R) € I(Q, A) NV, there is
a stack U on R according to Ag s such that for some a <, My, is the last model of U.
If T is as above then we say T is a A-universal stack on Q according to A.

Now observe that because of our assumption on (P, X), whenever Q,R € pI(P,X), (Q,Xq) and
(R, Zg) have a common tail in N} |6,. In fact more is true. Suppose « is a strong cardinal of N;. Then it
follows that if Q, R € pI(P,X) N N« then (@, Xq) and (R, Zg) have a common tail in N|x. This means
that whenever k < & is a cardinal of N} and Q € (pI(P,X) U pB(P, X)) N Nk, we can form the direct
limit of all Zq iterates of Q that are in N|k. Let R4 pe this direct limit.

Lemma 6.4 (Uniqueness of universal tails) Suppose Q € pI(P,X) N N}|0,. Then for each S <; , Q
and N-strong k < ¢, such that S € N |k, there is a unique k-universal tail of (S,Xs). In fact, letting
R = RKS’ES, (R, ZR) is the unique x-universal tail of (S,Zs)

Definition 6.5 Suppose Q € (pI(P,X) U pB(P,X)) N N6, and « is an N-strong cardinal such that
Q € N]|k. Then we say N captures a tail of (Q,Xq) below « if there is a hod pair (R,A) € N such
that A is a (k, k)-iteration strategy and there is a term relation T € NC<9 sych that whenever
g C Coll(w, |R[") is N-generic,

1. N[gl k “(R,7g) is a hod pair at k such that 7, is k-fullness preserving" and T, I N = A,

2. forsome A <k, R = R/?’A and letting T, U € N|g] witness that 7, is k-uB, whenever h C Coll(w, <
) is Ngl-generic, (p[THNEIM = Code(Zg) N Ngl[A].

We say N captures B(Q, Zq) below « if whenever R € pB(Q,Zq) N NIk, N captures (R, Zg) below k.

Towards a contradiction, we assume that A does not capture a tail of (P, X)

328ee Definition ??.
33This is the longest proper layer of R.
¥ Here, if T is a short tree strategy then ¢ = .



Notation 6.6 For each Q € pB(P,Y), we let Aq be the least N-strong cardinal v such that N captures
the v-universal tail of (Q,Zq). We let (RPE, ODY) be the Ag-universal tail of (Q, Xq). For each inacces-

sible cardinal v such that Q € N|v, we let (7{9’2, CD?’E) be the v-universal tail of (Q,Xq). If 1 = Aq then

Yo . . 2q
T IS the iteration map w QRas"

2

Notation 6.7 Suppose now that ko is an N-strong cardinal that reflects the set of N-strong cardinals.
Let

Ey={E € EN:NE “V(E) is inaccessible" and for all n € (0,v(E)), N £ “n is a strong cardinal" if and
only if UIt(N, E) ¥ “n is a strong cardinal"}.

Notation 6.8 Working in N, let

F={(@QAN):Q¢ N[z ANIJINTE “(Q,A) is a hod pair at 6, and A has branch condensation and is
O;-fullness preserving”}.

We have that F is a directed system. Let for A < 6,
Fra={QAeF :QeN|1}.
We let R* be the direct limit of ¥ | ko under the iteration maps. -

Definition 6.9 Let Ry = (R, )" 4

The next lemma summarizes what was proved in [4].
Lemma 6.10 The following holds.
1. Suppose Q € pB(P,X) N N|ko. Then R2%a e Nko.

2. Suppose Q € pB(P,X), 1 > ko is a strong cardinal of N such that Q € N|A, and E € & is an
extender with critical point ko such that v(E) > (A)N:. Then ®@* | UIt(N, E) € Ult(N, E).

3. Let R* be as in Notation Then either Ry <poa R* or Rolo® = R*. Moreover, Ry € N and
Lr, I N e JINI

The idea of the proof of Lemma|6.10]is explained in the next section.

6.2 The meek case

In the case A% is a successor ordinal. We assume X is strongly guided by B = {B; : i < w} and some tail
(R, ©) of (P, Zp-) is captured by N. We can then capture an iterate of £ by using the universality of the
L[E, ®]N -construction. In particular, let x be the least < §-strong of N\ above R, and (M, Y¥) = (ﬂf, ‘PZ)).
One can show M € N by showing M|6M is Vg OD a5 computed in the derived model of A at k, where
N1 = LIN{] and N7 is the last model of the L[E, ®]N-construction. To see ¥ | N € N, N can define
the following strategy A and verify that A =¥ [ N.

LetQ = RKP. Given normal tree 7~ € dom(A), we let A(7") = b if one of the following holds:

1. 7 isbased on @ and b = \PQ,TPEI

BQ = QA2 - 1) if A9 is a successor ordinal.



2. 7 has is not entirely based on Q™ and if (S, U) are such that 7 up to S is based on Q™ and U is
on S above S, then one of the following holds:

(a) U has a fatal drop at (a,y) and letting ‘W be the part of U after stage «, (WA{MZI} is
according to the strategy of O;V(ZI.
(b) U doesn’t have a fatal drop, Q(U, b) exists and Q(U, b) is an initial segment of L[E, ¥s-1V.

(c) None of the above holds. There is an extender E € EN with crit(E) = k and such that

T € N|v(E) and there is o : MZ — 7(Q) with the property that 7g | Q = 0 o an.

Suppose A7 is a limit ordinal and without loss of generality, we assume cof* (A7) is measurable in
#. Recall we assume the theorem holds for every Q € pB(,X). The following facts take place in N
and are easy to prove. The key point in all of these proofs is that letting £* be the resurrection extender
of E, then np«(Z [ N}) =X [ Ult(N}, E™).

Lemma 6.11 Suppose v is an inaccessible cardinal and A > v is strong in N. Suppose (Q,Xq) €
BP.2) NNy, REe N, and ¥ | N|A € N. Then ¥§ | N|6 € N.

Lemma 6.12 Suppose (Q,Xq) € B(P,X) N N|ko. Then Aq < ko and therefore R4 e Nlk.

Lemma 6.13 Suppose (Q,Zq) € B(P,X) N N} and A > « is a strong cardinal such that Aq < A. Let
E € & be such that cr(E) = k and v(E) > (A")N:. Then W9 | UIt(N, E)|6 € UIt(N, E).

The above lemmas easily imply parts 1 and 2 of Lemma To see part 3, first note that Ry = (RZ’Z.
The first clause of 3 is clear from our hypothesis. To see Ry € N, let A = @, _ 1z, Zg,(a). We claim that
A | N6 € N. This implies Ry € N because Ry = Lp,) A(Ryl6%0) and Lp) ARoloR0) e N by universality.

To see that A € N, note that the sequence (Xg,q) I N6 : @ < AR} e N because for each such a,
we can let (Q, @) € F such that (Ro(@), Zr, () is an iterate of (Q, ®). N can define a kp-universal stack
S e N that witnesses this. Then XRo@) = D S Ro(a) and doesn’t depend on the choice of (Q, ®).

We have outlined the argument that @, _ ;z, Xz, (@) [ N16 € N. Now we need to argue Zg [ N6 € N.
We will define a mg-realizable strategy A of R in NV and show that A = Zg [ N/|9.

We briefly review definitions and notations related to the analysis of stacks in [4) Section 6.2]; see
[4} Section 6.2] for a more detailed discussion. Suppose £ is a hod premouse and 7" is a stack on . Let
S be a model that appears in 7. By T <s we mean the part of T up to and including S (according to the
tree order of 7_&), we define 7_&23, T <S> ‘713 similarly. We let (M,, T, : @ < 1) be the normal components
of ‘7i ie. My =P, T,is a normal tree on M, and My,1 = M7e. We say R is a terminal node of T
if for some «,8, R = MT" and 7r 1s defined. We say R is a non-trivial terminal node of T if letting

(a, B) witness that R is a termlnal node of T , the extender ETe 5 is applied to R in the tree 7, to obtain
the model M[;rjr’l. We write tn(’]i) for the set of terminal nodes of 7~ and m‘n(‘]i ) for the set of non-trivial

terminal nodes of 7.
For QR e tn(T ), we write Q <7 R if the Q-to-R iteration embeddmg in 7" exists, and we write
« for this embedding. We write Q <Ts Rif letting U be the part of 7" between Q and R, then U is

an 1terat10n on Q. We write TQ’R for U.

LetC C tn(7i). We say C is linear (strongly linear respectively) if C is linearly ordered by <T (<f’5
respectively). We say C is closed if C is strongly linear and whenever « is a limit point of C, then letting
R be the direct limit of C [ @ (under the iteration embeddings), we have R € C. We say C is cofinal if
for every S € T , there are Q, R € C such that Q <71’S R and S is in 7ia,7g. Note that if 7~ doesn’t have
a last model, but there is a strongly closed and cofinal C C tn(7i ), then C uniquely determines a cofinal



branch of 7. If such a C doesn’t exist, then 7 is a successor ordinal, say n = @ + 1. Let U = T, « and
D = {S € tn(U) : Usg is atree on S}. In this case D has a <7 *-largest element and we write S for

. 3 Sz R .
this element. Then Ts,1sa normal tree based on S;2(B + 1) and above 6 ﬁ'r for some 8 < A57 . We write

7 Sz .. . . =3
fT’S'f for 6 ﬂT and similar notations are applied to any Q € ntn(7).

Definition 6.14 (rg-realizable iterations) Let T be a stack on R. We say T is ng-realizable for E € &
if there is a strong cardinal A < v(E) such that TeN |4 and sequences {(oq : Q € tn(71)>, ((Sq,Ag) €
FolAd:Qe tn(‘f)) such that

1. og=ng | R forallQ e m(‘]i), oq: Q- nme(R).

>

2. For@Q,S € tn(‘i_&) such that Q <Ts S, 0g=0s0 ﬂgs.

3. ForeveryQ € ntn(7i ), U'Q[Q(frf’a +1)]c rng(ng(‘j o) We let SE = o-Q(;l/fQ +1).
4. For every Q € ntn(7i), letting (Sq, Aq) be as above, and letting kq : Q(f(f’Q +1) - Sg be

given by: kq(x) =y if and only if oq(x) = 7725 ~O) and k@‘f@ is according to Ag. Furthermore,
(Q(f(]i’a + 1), A(SQ) € np(Fo) and oq | Q({F’Q + 1) is the embedding given by AZQ.

5. Q8¢ ntn(7i) such that Q <7 S,

(A% = (AD)

S(r) (71 Sl €741y’

6. For every trivial terminal node Q, for every & < A9, there is a hod pair (Sq, Aq) € Fo | A such
that o€+ 1) C rng(ﬂgz N}

Definition 6.15 Let 7 € N6 be a stack of on R We let T € dom(\) iff for some & < 6, whenever
E € &y such that v(E) > &, T is ng-realizable . Define A(7i) = b iff for some & < 9, whenever E € &
such that v(E) > &, T-b is ng-realizable.

The following are the key ideas in showing A = Zg [ N|5.

Claim 6.16 Let T € dom(A). There is & < 6 such that for all E € &y with v(E) > letting E* € EN:
be E’s resurrection, and i : Ult(N, E) — ng<(N) be the factor map, for every Q € ntn(‘ii), ioogqisthe

iteration embedding according to Xq.

Proof. We sketch the proof here. nmg- = i o o is the iteration embedding according to X£g. Suppose
Q € ntn(7) and there is a largest @ <7* Q (the case there is no largest Q° <’ * Q is easy). Note that
T @*.q 1s based on Q* ("9 +1) and is according to Xq-. Write ¢ for 7 . Since

7qQ(x) = 0@ (f)(oq(a@)

for x = 71'2—* oM@ and f € Q anda € QU +1).
It is enough to show oq | Q(¢ + 1) is according to Xq. For this, it suffices (by the inductive
hypothesis, using item 5) to see that

ko
(Ag e+ = Zar¢+n I NIG. (1)

The following are the main things to note:

364" either has a strongly linear, closed and cofinal set C C tn(‘f) or 7 Sy is of limit length.
3TWe can take £ to be above the sup of A for every ¢ < Aq and every Q € ntn(7i).



s

() UON. E) ¥ (A ey = (A5 o1y

Q" € Nv.

I Nlv where v < v(E) is a strong cardinal such that

(i) i(AQ")sy, (o c+1) = ESp. (g +1) [ NI6.

(ii) follows from the choice of E that allows us to find a common iterate of (S%,., Ag+) and (RY, 99
UIt(N,E)) in N|A. Since i o og- is the iteration embedding according to Zg-, i((AQ*)Sg*(UQ*@H))) =
Yo+ I es(N), and i 1 A = id, (I) easily follows. O

Claim 6.17 Suppose T is ng-realizable for E as in Claim Then T € dom(Zg).

Proof. We need to show that for any Q € tn(ff ), T R.Q 1s according to g and if Sff exists then 71571 is
according to ng.
The first claim is proved as follows. Let E* be the resurrection of E and i : Ult(N, E) — ng-(N) be
the factor map. Then
TE= rR:iOO'QoerQ.

Since g« | R is the iteration embedding according to X, 7, R.Q 1s according to Xg by branch condensa-
tion.

The second claim has been proved by the previous claim. Note that letting K = Sz, 7_')'7< is based on
K ({fﬂ( + 1) and is according to Asz(. But the claim above shows that Ag? = 27(( K1y This is what
we want. O

Claim 6.18 Suppose T e dom(A), then A(7i) is defined.

Proof. Let & witness 7 € dom(A). First suppose S is undefined. So there is a closed and unbounded
C C ntn(7"). Let b = bc be the cofinal branch given by C. Let £ be the sup of Ay for K € ntn(7i”b
and £ < A% 1f 1 > max(¢, %), then A witnesses 7~ (M € dom(A).

Suppose S exists. Let Q = Sz and T~ = ‘fb and b = Ag(kqT). It is easy to see (using arguments
similar to the above claims) that b is independent of E and 7 ~b is according to Zg. Suppose mp, exists
and let £* be at least the sup of Ay for K € ntn(’f“b. Let EEg be such that v(E) > A for some strong
cardinal 1 > £*. Let S = MZ and £s : S — mg(R) be the natural map: os(x) = oq(f)(r(a)) for f € Q,

k,
A Q
a € (6(7))<® such that x = m,(f)(a), and 1(a) = nsf 2 10,8 (a). We want to verify that all clauses
7Tb +1),0q
of Definition hold. All are easy except possibly clause 6. Let E* be E’s resurrection extender and
i: Ult(N,E) — mg-(N) be the factor map. Letting j = i o os, then j is according to £s. For every
y < a8,
S <l
JSNT € s g (s

This means (RSY), ¢S . y < A15) witnesses clause 6.



6.3 The non-meek case

Below we will develop a technology for recovering the full iterate of . Let R} = RZ’Z be the iterate of
# extending Ro and let i :  — R be the iteration embedding. We will recover an iterate of R inside N
as an output of a backgrounded construction that is done over Ry. Such constructions are called mixed
hod pair constructions. The details of this construction appear in Section ??.

There are two kinds of extenders that we will use in this construction. The extenders with critical
point > 6% will have traditional background certificates. We will use the total extenders on the sequence
of N to certify such extenders. The extenders with critical point 6% will come from a different source.
The following key lemma illustrates the idea.

Lemma 6.19 Let § = 6%, Suppose S € pIR; s Ige) is a normal iterate of R that is obtained by

iterating entirely above §%. Suppose that a € dom(ﬁs) is such that letting E =g4.¢ ES (@), crit(E) = 6,
Sla e NandZs) | N € J[N]. Then E € N. Moreover, (a,A) € E if and only if a € v<“J A € [6]% and
whenever F € & is such that crit(F) = ko and

N E “there is a strong cardinal A in the interval (ky, vr) such that S € N|A”,

ES\U
TS @ € nF(A'

Proof. Set M* = Ul(R',E) and M = UIH(Ro, E). Let F* be the resurrection of F and let o :
UIt(N, F) — np+-(N) be the canonical factor map. We have that o | vp = id. Thus, np- | N = 0 o np.
It follows that 7+ [ R* is the iteration embedding implying

2M+ RS

(1) TR+ ng = M*7r *(R+)

‘We now have that
R+
(a,A) € E aen(A)

St Ry
/V/;:(rﬂ *('R+ (a) € ﬂ’/\/ﬁﬂ (-R+ ( EO(A))

T oy (@) € T (A)

TN ) (@) € TTR(A))

i;(v‘n F(Ro )((l) € ﬂF(A)

HHHHH

Therefore,

Zm
(a,A) e E — ﬂM,nF('Ro)(a) e nr(A).

By our assumption, the right hand side of the equivalence can be computed in N. Hence E € N. |

Thus, the extenders with critical point Ry that we will use in our mixed hod pair construction have
the following property. If Q is the current level of the construction and A is its strategy then let E be the
set of pairs (a, A) such that a € (Rp)<“ and for every F € &gy such that crit(F) =,0 and

N E “there is a strong cardinal t in the interval (0, vr) such that Q € N|t”,

ES\H
ST,
(0

33The embedding 75 is just 7r

. We will often abuse our notation this way.
Sla,mp(Ro)

ar.



R nr(Re) (@ € TE(A).

There is one problem with this approach. We need to know the strategy A of Q before we can find
the relevant extender. To resolve this problem, we will first define the strategy A. Essentially A will pick
branches that, for some 7, are mg-realizable for all E € &y such that vg > 1. We will call such strategies
Ep-certified.

Lemma 6.20 Suppose n > _0 is such that N £ “n is a strong cardinal that reflects the set of strong

Tt

cardinals”. Set ST = RZID’):, it = HR/iOS*’ S=SHandi=i* | Ro. Thenie N and N e |S| < (i7H)V.
i,

Remark 6.21 We also get, by methods in [[7, Theorem 9.2.2], that ng | S is a strongly condensing set

in Ult(N, E)[g] where g C Coll(w, mg(n)) is any Ult(N7, E)-generic.

Proof. If suffices show thati € N. Let F € EN be any extender such that crit(F) = kg and UIt(N, F) £ “n

is a strong cardinal". Let F* be the background certificate of F and let k : Ult(N, F) — np-(N) be the
pI
canonical factor map. We now have that g | Rg = HRTO ... We thus have that
ST (Ro)
Zpt

+ _ s+ 0
(Dmp TRy = st ape®) © RE S

b
Letm =g

S
T (RY) I S|6°. We have that

_ZgeS _ S
2)ym= L — where & = sup(m[6°]).

Because Lg5s [ N € N, we have that k(Zgss [ N) = Zgss | mp+(N) and therefore, m € np+(N)
and m € rge(k). Letn = k~'(m). Thus,

258
_ S|6¢
)7 = 7 s e R @

Notice now that for x € Ry,

) 75 () = 7T e (i)

T (

implying that

(5) S is the transitive collapse of {mp-(f)(m(a)) : f € Ry Aa € (65)<¢} and nif

T (RD) IS is the

inverse of the transitive collapse.
(5) now implies that
(6) S is the transitive collapse of {mp(f)(n(a)): f e RoAae (55)<w).

Since {mp(fH(n(a)) : f € RoAa € (65)<“} € N, we have that if o : S — 7p(Ro) is the inverse of
the transitive collapse then o € N. Moreover,

(7) mp- rRO:kOUOiandkoazﬂ§§+

7 (RY) S

It now follows that



(8) i(x) = o (p ().

Since both o and &g are in N, we get thati € N.
O

Suppose now that « is an N-strong cardinal that reflects the set of N-strong cardinals such that
Kk > kp. Let

E={E € EN:NE “v(E) is inaccessible" and for all € (k, v(E)), N E “n is a strong cardinal” if and
only if Ult(N, E) E “n is a strong cardinal"}.

Set R = R2F and let R = (RM)P. It follows from Lemma that R € N. Let &+ = (®F ")g= and

@:@;@

Notice that ® [ N € L[N].
Definition 6.22 Working in N, we say (o, Q) is E-realizable if
e 0 : R — Qis an elementary embedding,

e for some N-strong cardinal £ € (,2), Q € N|¢ and for all E € & such that ¢ < v(E) and for all N-
generic g C Coll(w,Q), there is j: Q — np(R) such that j € Ult(N,E)[gl and g | R=0 o j.m

We say that j is (ng, o)-realizable. Continuing our work in N, let F/. be the set of ng-realizable pairs
(0, Q). Given (0,Q) € Ff, let £(0, Q) < z witness that clause 2 above holds for (o, Q). Given E € &
such that £(o, Q) < V(E), letting j : Q — mg(R) be any (g, 0)-realizable embedding, set ¥ q g ; = (j-
pullback of ng(®)] 5

The following is an easy consequence of the remark after Lemma [6.20] and

Definition 6.23 Working in N, we say (o, Q) is neatly E-realizable if (o, Q) is E-realizable and for all
Eo, E) € & with W(Eo) < W(E)),

YoaE, I N(Eo) = YoqE, T NIV(E).
Let Fg be the set of neatly E-realizable pairs, and for (o, Q) € Fg, let

¥rq = U¥rqr : E€ENEO0,Q < vE)

The following is a key lemma.

Lemma 6.24 Suppose S is a ®*-iterate of R* via T such that n”* is defined and S € N. Then
b e N, (77l SbY is neatly E-realizable and

VY o0 = (ng IN.

3See Notation

“ONotice that 7z | R € Ult(N, E), see Lemma
MY, o is defined in Ult(N, E).

2y qis defined in J[N] and W,q | N is total.



Proof. The proof of 77+? € N is exactly the proof of Lemma The proof of the fact that (7 *, %)
is neatly E-realizable is via a simple absoluteness argument. Let E € & be such that S” € N|v(E) and
let E* be the background certificate of E. Let k : Ult(N, E) — ng-(N) be the canonical factor map. We
have that crit(k) > v(E). Set o = 17 *. Notice that

(1) in g« (N), it is forced by Coll(w, SP?) that there is a (-, o)-realizable j : S” — 7-(R), and
(2)if g C Coll(w, S?) is mg+(N)-generic and j : S” — mg-(R) is any (g, o)-realizable embedding, then
the j-pullback of 7g«(®) is CD:E;b-

It follows that

(3) in N, it is forced by Coll(w, S) that there is a (-, o)-realizable j : S” — mg-(R), and
@) if g C Coll(w, SHis N -generic and j : St 5 1p(R) is any (mg-, o)-realizable embedding, then the
Jj-pullback of g (®) is independent of j.

Let IT in Ult(N, E) be the strategy of S” such that it is forced by Coll(w, S”), that for some (1g, o)-
realizable j, ITis the j-pullback of g (®). Let 7 : S? - n(R) be defined by setting 7(x) = mg(f )(ngl Shp (R)(a))

where x = o(f)(a), f € Rand a € (S”)<“. It follows from clause 2 of Lemma m that 7 is
a (mg,o)-realization and T € Ult(N, E). It then follows from (2) that k(II) = d)gh and therefore,

Il = %, | UIN, E). O

Definition 6.25 Suppose (0,Q) € Fg and E € & is such that £&(o, Q) < v(E). We say that T = Tg Q

is the canonical E-realization of (0,Q) if T : @ — ng(R) and 1(x) = ng( f)(nzl"g‘qg(g Q)(a)) where

R(0, Q) Qpoa R is the Y, q p-iterate of QQ, f € R, a € (Q)~ and x = o (f)(a). .

The following definitions use various terms from [7]] that if introduced here, would make this note
impossibly long. Please look them up in [7].

Definition 6.26 (rz-realizable iterations) Suppose
1. V € N is a hod premouse extending R such that R = V?,
2. T € N is either a stack on V or an st-stack on “V@
3. Ecé&.
Suppose that
T = (Mo)a<ps (E¢)a<n-1, D, R, (Bas Ma)aer, T)
is a stack. Set R” = {@ € R : n;r’(’f is defined). We say T is ng-realizable if the following holds:
1. N e “Adis a strong cardinal".
2. T € NIh(E).

3. Foralla € RY, (n”<eb, Mb) € Ta@

“If 7 is an st-stack then V must be of #-Isa type.
#See Definition @



4. Forall a < 8 such that a8 € R?, setting T, = Tf_a, Tq =TRO nz,’b

Foralla € RY, letting ¥, = \PU‘Y,M{;’
5. (a) if @ # max(R?) and nc? is based on ME| M, then nc? is according to ¥,
(b) if @ = max(R") and U =] (Tsa, MLYF| then

i. if U is based on Mg and is above M? then it is according to the unique strategy 11 of

M? witnessing that M?, is a ¥ ,-mouse over M2IM?, and

ii. if U is based on ME|M?L then U is according to \P,,.

We say that (oq : @ € RY) are the ng-realizable embeddings of T and (Y, : a € RY) are the ng-
realizable strategies of 7. We say T is E-realizable if for some 1, T is ng-realizable for every E € &
with the property that Ih(E) > n.

The definition of the above concepts for st-stacks is very similar. The embeddings o are once again
defined for @ € R” which once again consists of those a < Ih(T") with the property that ﬂ;)/tf is defined.
We leave the details to the reader. .

Recall the E-realizable backgrounded constructions in [7, Definitionn 10.2.28]. We will use them
to find the @-structures of various iterations and help us define the &-certified iterations.

Definition 6.27 Suppose V € N is a hod premouse extending R such that R = V°. Suppose T € N is
a stack or an st-stack on V and E € E. We say T is E-certified if the following conditions are satisfied.

1. T is ng-realizable.

2. Suppose T € (R"T is such that letting U =4ef ncTT, U is above M’T’ Let a < Ih(U) be a limit
ordinal and let ¢ = [0, @)q. Then the following conditions hold.

(a) f m™(U T @) F “(U T @) is not a Woodin cardinal ’m then Q(c, U | «) exists and Q(c, U T
aymt(U | a).

(b)) Ifm*™(U T @) E “(U T @) is a Woodin cardinal” and there is ‘W such that
i. ‘W appears on the Le®“(m*(U| | @)) construction of N and
ii. WE “((L{ I @) is a Woodin cardinal" but J ,[ W] E “{(L( I @) is not a Woodin cardinal”,
then Q(c, U | «) exists and Qlc, U | a) = W.

(¢) The above two clauses fail. Then T is an st-stack, « + 1 = Ih(U) and T+ @ € R” nmax”.

We say that T is E-certified if for some A, T is E-certified for every E € & such that 1h(E) > A. -
And finally we define &-certified strategies.

Definition 6.28 Suppose V € N is a hod premouse extending R such that R = V?. We let Ay be the
partial strategy of V with the property that

1. dom(A«y) consists of E-certified stacks T of limit length, and
2. forall T € dom(A«w), Aqy(T) = b if b is the unique x such that T~ {x} is &-certified.

We say A« is the E-certified strategy of V. =

45This is just the restriction of 7%, to M2.

46See Definition



Suppose now that

T = ((Ma)a<777 (Ea)(t<r]—1 D, R, (B, Ma)acr, T)

is mp-realizable as witnessed by (07, : @ € R”) and (¥, : @ € R"). Using the language of [7, Chapter
9] applied in UIt(N,E) to ng(F | &), it is not hard to see that for a € (R?)”, Mg = Py, where
Y, = 0'(,[/\/(3] and ¥, = Zy,. It now follows from the existence of condensing sets that there are unique
&E-certified strategies.

Lemma 6.29 Suppose V € N is a hod premouse extending R such that R = V®. Suppose A and ¥ are
two E-certified strategies for V. Then A = P.

Next, we need to show the correctness of the realizable strategy. The reader should review the
notions of stacks for a strategy or a sts strategy in [[7, Chapter 2].

Lemma 6.30 Suppose S* is a ®*-iterate of R* via an iteration that is entirely above §X. Suppose
further that S <joq S* is such that S®* = Rand S € N. Let T € N be a stack on ﬂ Suppose T is
&-certified. Then T is according to @¢. Thus, As = NN 2.@

Proof. Suppose

7- = ((M(Z)IZ<T]7 (E(Z)(I<T]—l ’ D7 R7 (ﬁ(l? ma’)(lGR’ T)7

and suppose a € R is such that 7, is according to . We want to show that U = nc? is according to
+
U
Suppose first that U is based on MZ@ Let E € & be such that 7 is ng-realizable as witnessed by
(0g : @ € R?) and (¥, : @ € R?). Let E* be the background certificate of E and let k : Ult(N,E) —
ng«(N) be the canonical factor map. Notice that for o € R?,

(1) k [ N|¢ = id where £ is the least such that 7~ € N|E.
) In mg-(N), k(o) : MZ — ng«(N) and k(¥,) is the k(o )-pullback of 7z« (D).
B) k(o) T /Vlal(SMg is the iteration embedding according to k(‘¥,).

@,
Let F be the un-dropping extender of 7, and set K™ = Ult(R", F) and j = 717("5 e (R) r MaléMZ.
Notice now that
4 o MM is the j-pullback of ng-(®) and j is the iteration embedding according to © MM

As the pairs (k(oy), k(¥,)) and (j, @ Mojo

k(o) = jand k(¥,) = (DM oM I me-(N). Since k(U) = U, in the case U is based on MaléMZ, we
have that U is according to k(¥,) and therefore, U is according to ®© Myl ME > and in the case U is above
5M

) have the same property, it follows from Lemma ?? that

b . . . . .

o, we have that U is according to the unique strategy of M? that witnesses the fact that M? is a
_ M,

q)MaléMg mouse over Mg|6" .

4TWe assume that 7~ is a stack, but the proof works for generalized stacks as well.

“8This equation does not imply that Ag = @ I N, simply because it does not imply that if x € dom(dg) N N then
®(x) € N. To get the aforementioned equality, we need to show that A is total.

“There is yet another case: namely, @ = max R” and U = T>,. But this case is very similar to our two cases.



Suppose now that U is above ord(M?®). Here, we need to see that

(a) if B < Ih(UY) is a limit ordinal then letting b = [0, B)¢y, either Q(b, U) <« m™ (U) or else Q(b, U) <

I_pl—‘,((l)"')‘:éfr I (m+ ((L{))

The following lemma establishes (a). For convenience, we will ignore the objects introduced above
and treat next lemma in a general context. Thus 7 in the next lemma is not the 7 fixed above.

Lemma 6.31 Suppose T is an E-certified iteration of S, @ € R® and U = nc? is above ord(MD).
Suppose further that § < Ih(U) is a limit ordinal and U g is according to (Djv( . LetQ = MZI and

n> 69 be such that Jol@)*] £ “n is a Woodin cardinal” and let W < Q be an sts mouse over (Qn)*.

; +\stc  _
Then W is a (OF) Qnt sts mouse.

Proof. Towards a contradiction assume that W is not a ((D+)fgln)#—sts mouse. It follows that b = [0, 8)¢/
is not the branch chosen by @%. For convenience, we change our notation and let ¢ be U | S and

Q = m*(U). It follows from Definition that

(1) ‘W is a model appearing in the fully backgrounded &-realizable construction over (Qn)* done in

N.

What we need to see is that ‘W is a (CD*)gC—sts mouse over Q. To show this it is enough to show
that every stack indexed in ‘W is according to (@*)g". To show this later fact, it is enough to show that

(b) if r = (Q, Uy, Ay, U1) is an indexable stackF_U] on Q appearing in the fully backgrounded &-realizable
construction over Q (done in ) and c is the branch of ¢ indexed in this construction then ™ {c} is ac-

stc

cording to (®*);¢.

(b) is indeed enough. To see this, notice that if s = (Q, U, Q|, U}) is indexed in ‘W and ¢’ is the
branch of s indexed in ‘W then for some stack ¢ = (Q, Uy, Q1, U) as in (b) if e is the branch of ¢ then
s {c}is a hull of t{e}. If 7 is according to (@*)gc then it follows from hull condensation of (@*)gc that
s is also according to (dﬁ)g”. We now work towards showing that ¢ is according to ((I)J’)g" .

Suppose first that U is according to (<I>+)gc. We then have that U is a stack based on Qll’ . Because
(7<)t is &-certified, we can fix an extender E € & such that (7<,)" t is mg-realizable. We then have
o Q’l’ — 7p(R) such that 7g | R = o o 7ot o g7=@P  We also have that U {c} is according to the
o-pullback of mg(®g). Therefore, ¢ is according to (@*)g".

It remains to show that U is according to (<D+)gc. Without loss of generality, we assume that

Ih(Uo) =y + 1,

e <y is a limit ordinal,

stc

Q 9

Uy Ty is according to (D)

[0,V )2ty # (©F)I(Up),

there is € RU01 guch that (Up)sr = nCZf0 and 7H0? exists,

o Jo[mt (Ul E “(7/[0) is a Woodin cardinal".

3See [[7, Chapter3].



The last two clauses can be shown by examining the proof given for U;. Set ¢y = [0, ), Qo =def Q,
Q = m*(Up), Wo =gey W and W = Q(co, Up) . We then have that

(2) ‘W, appears in the fully backgrounded &-realizable construction over @, (done in N).

Clearly (2) leads to an infinite descend. |

O

The following two lemmas show that when we do a sts hod pair constructions (in the sense of [7]),
we don’t terminate the construction because a branch indexed in the model fails to be according to A«p.
We prove the second lemma, whose proof relies on the fact that the E-certified strategy of V, is total.
The proof of Lemma [6.32]is fairly similar to Lemma|[6.34]

Lemma 6.32 V € N is a hod premouse extending R such that R = VP, Then A« is total, and hence,
d)fv F'N =Aq.

Lemma 6.33 Suppose
1. V € N is a hod premouse extending R such that R = V?,
2. T € N is either a stack on “V or an st-stack on (VEI
3. alb s defined, T has a last model and &-realizable.

Let S be the last model of T and suppose Q is authenticateaF_ZI by T and is meek and of limit typﬂ
Then ‘W, U, be as in [[7| Definition 3.7.3] and letting k : R — @Q be given by k(x) = y if and only
o a"P(x)) = 7Y(y), (k, Q) is E-realizable.

Lemma 6.34 Suppose
1. V € N is a hod premouse extending R such that R = V",
2. T € N is either a stack on V or an st-stack on
3. 77b s defined, T has a last model and &-realizable.

Let 8’ be the last model of T and suppose n < ord(S’) is such that J,[(S'In)*] & “n is a Woodin
cardinal”. Suppose S =4 ¢ (S| is such that SyeqS’ and U € N is an nuvs stack according to (Avy)s
such that 7%° is defined. Let Q = m*(U) and suppose t € N be an indexable stack on Q which is
(S, (A(V)S)-authenticatecf_gl Then T Ut is according to A«y.

Proof. Suppose t = (Qp, Xo,Q1,X1). Assume first that X is according to (Aq)q. Set p = T U™ Xy
and let o = 7P*. It follows from Lemrnathat p is according to A«,, and the previous lemma implies
that (o, Q? ) € Fg. Because (Q%, X)) is a (S, (A)s)-authenticated iteration, it follows from Lemma
that X is according to lPa,Q?’ and therefore, 7~ Ut is according to Aq.

SUIf 7~ is an st-stack then M must be of Isa type.

52See [[7, Definition 3.7.3].

3Thus, clause 3 of [[7L Definition 3.7.3] holds.

4If 7~ is an st-stack then V must be of #-Isa type.

3Notice that we, at this point, do not know that A« is a total strategy in J[N].



Thus, it is enough to show that X is according to (A«4/)q. The argument given above implies that it
is enough to show that for every @ € RX0 such that nz)\i?y’b is defined and nc;\,0 is a stack on Mg‘) above
ord((Mf,(O)b ) then ncf0 is according to (A«y) Ao

Assume then « is as above and (Xg)<, is according to (A )qg. Set M = Mfo, X = (Xp)<q and let
Y= ncf". We want to see that Y is according to (Ay) . Let 8 < 1h(Y) be a limit ordinal such that Y g
is according to (Aq) . We want to see that if b = [0,8)y then b = (Aqy)pm(Y <p). The dificult case is
when Q(b, Y ) exists and is an sts mouse over m* (Y .g). In this case, we want to see that Q(b, Y p) is
a model appearing in the fully backgrounded &-realizable construction over m* (%) (done in N). This
would follows from the proof of the previous lemma. Our strategy for showing this is by showing (a)
and (b) where these are the following statements:

(@) Qb,Yp)isa (D, ( y(ﬁ))m—mouse over m* (Y p).

O IfWisa ((I):ﬁ(y "
construction over m* () (done in N). More precisely, letting

)¥“-mouse over m* (Y ) then ‘W appears in the fully backgrounded &-realizable

Le®“(m* (Y <p)) = (Zy. Ky» Fy Fy,by 1y < 6)

be the fully backgrounded &-realizable construction over m*(Yg) done in N then for some y < §_,
Z,=W.

(a) is a consequence of strong branch condensation of ®*. (b) is a consequence of the fact that Ay
is total, and hence deV M JIN] = Aq (see Lemma . Assuming that A« is total, (b) can be proven
by simply comparing ‘W with the Le®(m* (Y <p)) construction. The stationarity of Le®“(m* (Y <p)) im-
plies that the construction side doesn’t move, and the fact that A« is total implies that the construction
doesn’t break down because in clause 3b of [/, Definitionn 10.2.28] we are unable to find the desired
branch. The Important Anomaly stated in clause 3b of [7, Definitionn 10.2.28] does not occur (at least
doesn’t occur before reaching ‘W) because these type of branches are chosen internally and both the
construction side and the “W-side must be choosing the same branch. But on the “W-side, the branch is
according to @7, and therefore, according to A« . In the next subsection, we will prove that A« is total,
and more details will be given. |

We devote this entire subsection to the definition of a construction producing the iterate of R*. In
this construction, we use E-certification method to acquire extenders with critical point 6%, and we use
the total extenders on the sequence of N to generate extenders with critical points > R. First we define
&-certified extenders. The reader may wish to review Definition [6.25]

Definition 6.35 Suppose Q € N is a hod premouse such that Ag (see Definition is total and
Q" = R. Suppose F is an extender such that (Q, F) is a reliable |ses where F is the amenable code of
F. We say F is E-certified if

o (nmp [ R, mr(R)) € Fg and

o for some N-strong cardinal A, for any E € & such that Ih(E) > A, setting T = Tn, rR,ﬂF(RE

(a,A) e F < 71(a) € ng(A).

36See Definition



We say that 7 is the E-realizability map of F. 4
The next lemma shows that E-certified extenders are on the sequence of R* and its iterates.

Lemma 6.36 Suppose S* € pI(R*,®*) and S <poq S* is such that S € N and S* = R. Suppose F
is such that (S, F) is a reliable |ses P’|where F is the amenable code of F and F is E-certified. Then
FeES.

Proof. Lety = ord(S) and suppose F* € ES (y). Then F* has exactly the same property as F and there-
fore, F = F*. Thus, it is enough to show that y € dom(ES"). Suppose first that there is v’ € dom(ES")
such that S <, S*|y’ and if G’ = ES (y") then crit(G’) = 6R. Let v* be the least such y’ and set
G=ES (y"). As F and G both have the property described in Deﬁnition F is an initial segment of
G, and therefore, y = y* and y € dom(ES"). Suppose then that

(1) there is no y’ € dom(ES") such that crit( ES (")) = oX.

Because F is &-certified, we have that for some N-strong cardinal 1, whenever E € & is such that
Ih(E) > A, some proper initial segment of 7g(R) is a @g-iterate of S. Therefore, (S, @g) is in HPT, and
hence, (S*, CD}) € HP'. This is because (1) implies that S* < Lpr’q)f?(S) or §* « Lpr’(q)g)m(S). O

Next we introduce the mixed hod pair constructions.

Definition 6.37 We say that
mhpc = (My, Ny, Yy, @y, FJ, Fy, by y < 0)
is the output of the mixed hod pair construction of N over R if the following conditions hold.

1. My = JulR], and for all y < 6, each of M, and N, is either undefined or is an hp-indexed |ses
(see [|7, Definition 3.9.2]).

2. Forally <6, if M, is defined then Y, = YMv (see [[7) Definition 2.3.13]).
3. Forally <6, if M, is defined then ©, = @y is the E-certified strategy of Mﬁ
4. Forally < 6, if N, is defined and either

(a) Ny is not a reliable hp-indexed Isesl?] or

(b) N, is a reliable hp-indexed |ses but for some Q € YNy such that Q is meek or gentl@ and
for some n < w, pp(Ny) < Q or

(c) @y is not total,

then all remaining objects with index > 7y are undefined.

For all y < n for which clause 4 (the above statement) fails, n, : core(N,) — N, is the un-
collapse map.

Yses is defined in [[7, Definition 2.5.4] and an Ises is reliable if all of its cores exist and are iterable.
8See Definition

$To verify that N, is Ises, we need to verify that clause 2 of [[7, Definition 2.5.4] holds.

%0See [[7, Definition 2.7.1].



5. Suppose for some & < 6, for all y < &, both M, N,, are defined. Then Mey1, Nep1, Yer1, @i,
F;, F¢ and bg are deteremined as follows.

(a) Suppose Mg = (jf(;f, e E, 1> Ye, €) is a passive hp-indexed Ises, there is an extender H* € &
an extender H over Mg, and an ordinal v < wa such that v < 1h(H*) and setting

H=H" 0 ([vV]° X IM]), and Neoy = (T €, E, f, Ye, H, €)

where H is the amenable code of H, clause 4.a fails for & + 1. Then letting 1 € dom(EN) be
the least such that H* =g,y EN (t) € & has the above properties,

Nei1 = (Jol e E. f, Ye, H, €)

where H is the amenable code of HF_T] Assuming clause 4 fails for & + 1, the remaining
objects are defined as follows.

i. M§+1 = COI‘e(NgHﬂ
il. F; =H"and Fs = H,
iii. be =0 and
iv. Yeor = ) (Ye).
_ E,f = . . iy J63 .
(b) Suppose Mg = (T e » € E, f, Ye, €) is a passive hp-indexed |ses™|and there is an extender
H over Mg such that setting

Newi = (TE] € E .Y, H. €)

where H is the amenable code of H, clause 4.a fails for ¢ + 1 and H is E-certified as defined
in Definition Assuming clause 4 fails for & + 1, the remaining objects are defined as
follows.

i. M§+1 = COI’G(NgHﬁ
ii. Fg = H" and F¢ = H,
iii. bg =0 and
iv. Yer =), (Ye).

(c) Suppose Mg = (jfg,f, e E, f>Ye, €) is a passive hp-indexed 1ses, Mg is strategy-read
a = B+ vy and there is t € | M¢|wpB] such that setting w = (J,(2), 1, €), w is (f, hp)-minimal
as witnessed by . In particular, this means that we have to index the branch of t at wa. and
y = 1h(?). Set b = ®g(t) and

E f*

Nert = ()

j_wy7€’E’f7 Yé"b’ E)

where b C w+wy is defined by w+wv € b &< v € b. Assuming clause 4 fails for & + 1, the
remaining objects are defined as follows.

i. Mesr = core(Ng4r),

- — F+ —

ii. Fe= ~Ff =0,
iii. bg=>band

®'Here H is what is determined by H*. For the definition of the “amenable code" see the last paragraph on page 14 of [T1].
%2Recall that core(M) is the core of M.

91.e., with no last predicate.

%Recall that core(M) is the core of M.

%See [7) Definition 3.9.1].



iv. Yer = ), (Ye).

Important Anomaly: Suppose UY¢ is #-Isa type and t is nuvs. Suppose e € M¢|wp is such
that Me¢|wp & stso(t, eﬁ If e # b then Ng. is not an sts premouse over J ,(UY¢) based on
UY¢, and so the construction must stop.

(d) If Mg doesn’t satisfy clause 2a, 2b or 2c then set Ngp = Jul Mgl (this presupposes that
yNen = Y¢). Assuming clause 4 fails for € + 1, the remaining objects are defined as follows.
i Mgy = COI‘G(NgHE
ii. Fg= Fg =0,
iii. by =0,
and Ygyy = ﬂ;il(Yg) U {ﬂ;il(M,f) in the case Mgy is a hod premouse and otherwise, Yey1 =
-1
Ter (Ye).
6. Suppose & < 6 is a limit ordinal and for all y < & both M,, and N, are defined. Then M and

N¢ are determined as followﬁ Set N¢ = limggM,. Assuming clause 4 fails for & + 1, the
remaining objects are defined as follows.

(a) Mg = core(Ng) and
(b) Ye =z (YNof]
7. Ms = Ns and Y5, ®s, F{, F5, and bs are undefined.

We say that the mhpc is successful if for some y, M, is a ®*-iterate of R*. 4
The following is the main fact we need, which is a corollary to several lemmas established before.
Lemma 6.38 mhpc is successful.

Proof. The lemma follows easily from Lemma [6.36] Lemma [6.32] and (b) that appears in the proof of
Lemma [6.34] (which was also established in the proof of Lemma [6.32).

To prove the lemma, we simply compare R* with mhpc-construction of A and argue that mhpc side
reaches an iterate of R*. As all extender used in mhpc with critical point > ord(R) have background
certificates, the usual stationarity argument shows that such extenders cannot be part of a disagreement in
the resulting comparison process. Lemma[6.36|shows that extenders with critical point R also cannot be
part of a disagreement, while Lemma|[6.32]shows that there cannot be a strategy disagreement. Therefore,
R* iterates to some model appearing on the mhpc-construction. |

Lemma[6.38]and Lemma[6.32] now imply Theorem [I.3] and this finishes our proof of Theorem[I.3]

%6See [[7, Definition 3.8.16]. This means that e is the branch of r we must choose.
67Recall that core(M) is the core of M.

%The rest of the objects will be defined at the next stage of the induction as in clause 4.
% F, and b; are defined at step ¢ + 1.
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