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We outline a proof of Strong Mouse Capturing in natural models of AD+ (i.e. those of the form
V = L(℘(R))) below the minimal model of LSA, which is the theory AD++Θ = θα+1 and θα is the largest
Suslin cardinal. Basic terminology and definitions concerning hod mice are taken from [5, 7].

Definition 0.1 Strong Mouse Capturing (SMC) is the statement that for any hod pair or an sts hod
pair (P,Σ) such that Σ has strong branch condensation and is strongly fullness preserving, and for any
reals x, y, x is ordinal definable from Σ and y if and only if x is in some Σ-mouse over y.

Definition 0.2 #lsa is the statement: there is a pointclass Γ ⊆ ℘(R)) such that L(Γ,R) ⊨ LSA and there
is a Suslin cardinal bigger than w(Γ).

We show

Theorem 0.3 Assume AD++ V = L(℘(R) + ¬#lsa. Then the Strong Mouse Capturing holds.

1 Outline of the proof

Towards a contradiction assume that SMC is false. Our first step is to locate the minimal level of the
Wadge hierarchy over which SMC becomes false. For simplicity we assume that the Mouse Capturing,
instead of the Strong Mouse Capturing, is false. Mouse Capturing is the same as SMC when the pair
(P,Σ) = ∅. The general case is only different in one aspect, it needs to be relativized to some strategy or
a short tree strategy Σ.

Let Γ be the least Wadge initial segment such that for some α

1. Γ = ℘(R) ∩ Lα(Γ,R),

2. Lα(Γ,R) ⊨ SMC,

3. there are reals x and y such that Lα+1(Γ,R) ⊨ “y is OD(x)" yet no x-mouse has y as a member.

See [5] for definitions of B(Q−,ΣQ−), B(P,Σ), strongly guided etc.

Definition 1.1 Suppose (P,Σ) is a hod pair and Γ∗ is a projectively closed pointclass. We say (P,Σ) is
Γ∗-perfect if the following conditions are met.

1. Σ is Γ∗-strongly fullness preserving and has strong branch condensation.

2. For every Q ∈ pI(P,Σ) ∪ pB(P,Σ) such that Q is of successor type, there is B⃗ = (Bi : i ≤ ω) ⊆
B(Q−,ΣQ−) such that B⃗ strongly guides ΣQ.

If Γ∗ = ℘(R) then we omit Γ∗ from our notation. ⊣

The following theorem was heavily used in [4]. It is essentially due to Steel and Woodin (see [2]).



Theorem 1.2 Assume AD+ and suppose (P,Σ) is a hod pair or an sts hod pair1 (or an anomalous
pair) such that L(Σ,R) ⊨ “(P,Σ) is perfect". Then L(Σ,R) ⊨ MC(Σ). Furthermore, for every R ◁c

hod P,
L(Σ,R) ⊨ MC(ΣR).

A key theorem used in the proof of Theorem 0.3 is the following capturing theorem. Its precursor is
stated as [4, Theorem 6.5].

Theorem 1.3 Suppose (P,Σ) is a perfect hod pair and Γ1 is a good pointclass such that Code(Σ) ∈ ∆Γ1 .
Suppose F is as in Theorem 2.7 for Γ1 and z ∈ dom(F) is such that if F(z) = (N∗z ,Mz, δz,Σz) then
(N∗z , δz,Σz) Suslin, co-Suslin captures Code(Σ)2. Let N = (Le(∅))N

∗
z |.z3. Then there is Q ∈ pI(P,Σ) ∩N

such that ΣQ ↾ N ∈ L[N].

The next key lemma that is used in the proof of Theorem 0.3 is the following generation lemma that
can be traced to [5, Lemma 6.23]. Below Γ is as above.

Lemma 1.4 There is a perfect pair (P,Σ) such that

Γ(P,Σ) ⊆ Γ ⊆ L(Σ,R).

Suppose now that (P,Σ) is a Γ-perfect pair such that Γ(P,Σ) ⊆ Γ ⊆ L(Σ,R). Such a pair is given to
us by Lemma 1.4.

We now apply Theorem 1.2. For each Q ∈ pI(P,Σ) there is a ΣQ-mouseMQ over (Q, x) such that
y is definable overMQ. We then again can find an x-mouse N such that for some Q ∈ N ∩ pI(P,Σ),
MQ ∈ N . It follows that y ∈ N . Thus, to finish the proof of Theorem 0.3, it is enough to establish
Theorem 1.3 and Lemma 1.4.

2 Γ-Woodin mice

We recall the definition of a good pointclass (see [14, Definition 9.12]). Unlike [14, Definition 9.12] we
include scale property into the definition of good pointclass.

Definition 2.1 We say Γ is a good pointclass if Γ is closed under recursive substitutions, is closed under
quantification over ω, is closed under existential quantification over R, is ω-parametrized4 and has the
scale property. ⊣

Suppose Γ is a good pointclass. For x ∈ R, we let CΓ(x) be the largest countable Γ(x)-set of reals.
For transitive a ∈ HC5 and surjection g : ω→ a, we let ag be the real coding (a, ∈) via g. More precisely,

ag(k) = { 1 : k = 2m3n and g(m) ∈ g(n)
0 : otherwise. Clearly Mag = (a, ∈). If b ⊆ a, then we let bg = {m : g(m) ∈ b}. We then let
CΓ(a) = {b ⊆ a : for comeager many g : ω→ a, bg ∈ CΓ(ag)}.

Continuing with Γ, we say P is a Γ-Woodin if there is a P-cardinal δP such that
1In the case (P,Σ) is an sts pair and there is no Suslin cardinal above Σ (like in the minimal model of LSA and

Σ has Wadge rank the largest Suslin cardinal), we only can prove sommething like the "Furthermore" clause. More
precisely, the proof shows that for any (Q,Λ) ∈ Ib(P,Σ) (see [7] for this notation), L(ΛQb ,R) ⊨ “for any R⊴c

hodQ
b,

MC(ΛR)”.TheproofalsoshowsthatL(Σ,R) ⊨ MC(Σ) if there is a Suslin cardinal above Σ in the model.
2We abuse the terminology and omit the other object used to express this type of capturing. In the sequel, if the nature of

these other objects, like the pair (N,Ψ), is not important we will omit them from the discussions.
3This is just the ordinary fully backgrounded construction.
4This means that there is U ⊆ ω × R such that U ∈ Γ and {A ⊆ R : A ∈ Γ} = {Ue : e ∈ ω}.
5HC is the set of hereditarily countable sets.



1. P is countable,

2. P = CΓ(CΓ(VP
.P

)),

3. P ⊨ “δP is the only Woodin cardinal" and

4. for every η < .P, CΓ(Vη) ⊨ “η is not a Woodin cardinal".

We say (P,Ψ) is a Γ-Woodin pair if

1. Ψ is an ω1-iteration strategy for P and

2. for every Ψ-iterate Q of P, Q is a Γ-Woodin6.

Woodin, assuming AD+, showed that if Γ is a good pointclass not closed under ∀R then there are Γ-
Woodin pairs (see [14, Theorem 10.3]).

Suppose Γ is a good pointclass and (P,Ψ) is a Γ-Woodin pair. Let LΨ be the extension of the
language of set theory obtained by adding one predicate symbol Ψ̇ and one constant symbol e. The
intended interpretation of Ψ̇ is Code(Ψ). e wlll denote a real number. Given u ∈ R, we define T ′n(Ψ, u)
to be the set of (ϕ, x⃗) such that ϕ is a Σn-formula in LΨ, x⃗ ∈ Rm where m is the number of free variables
of ϕ and

(HC,Code(Ψ), u, ∈) ⊨ ϕ[x⃗].

We let T ′n(Ψ) = T ′n(Ψ, 0).
Next we code T ′n(Ψ, u) by a set of reals as follows. First let GΨ be the set of natural numbers that

are Gödel numbers for LΨ-formulae. We say y ∈ R is Ψ-appropriate if y(0) is a Gödel number of an LΨ
formula. If y is Ψ-appropriate then we let ϕy be the formula that y(0) codes and ly be the number of free
variables of ϕy. Let (pi : i < ω) be the sequence of prime numbers in increasing order. For i ≤ ly, let
yi ∈ R be such that for all k ∈ ω, yi(k) = y(pk+1

i ). If y is Ψ-appropriate then we say y is neat if for all k′

such that k′ , 0 and k′ < {pk
i : i < ly ∧ k ∈ ω}, y(k′) = 0. Let then Tn(Ψ, u) be the set of Ψ-appropriate

neat y ∈ R such that

(ϕy,merge(yi : i < ly)) ∈ T ′n(Ψ, u).

Again, set Tn(Ψ) = Tn(Ψ, 0).
Suppose z ∈ R, ϕ is an LΨ-formula with l + 1 free variables and (xi : 2 ≤ i ≤ l) ∈ Rm. Let y0 ∈ R be

such that y0(0) is the Gödel number of ϕ and for i > 0, y0(i) = 0. Let y1 = z and for 2 ≤ i ≤ l, yi = xi.
Set a(ϕ, z, x⃗) = merge((yi : i ≤ l)). Notice that (ϕ, z, x⃗) is uniquely determined by a(ϕ, z, x⃗). In fact, the
function (ϕ, z, x⃗) 7→ a(ϕ, z, x⃗) is a Π0

1 injection.
Assuming AD, if A ⊆ R then w(A) is its Wadge rank, and if Γ is a pointclass then w(Γ) = sup{w(A) :

A ∈ Γ}.

Notation 2.2 Suppose Γ is a pointclass closed under continous preimages and A ⊆ R. We say A is a
least upper bound for Γ if Γ = {B ⊆ R : w(B) < w(A)}. Set then lub(Γ) = {A ⊆ R : A is a least upper
bound for Γ}. ⊣

Definition 2.3 Suppose Γ is any pointclass closed under the continuous preimages. We say that the
tuple (M, (P,Ψ),Γ∗, A) Suslin, co-Suslin captures Γ if the following conditions hold:

1. A ∈ lub(Γ),
6P is a coarse structure, there is no notion of dropping for iterations of P, so P-to-Q embedding always exists.



2. Γ∗ is the least good pointclass such that Γ ⊆ ∆Γ∗ .

3. (P,Ψ) is a Γ∗-Woodin pair.

4. (P, δP,Ψ) Suslin, co-Suslin captures A.

5. M is a self-capturing background as defined in [7, Definition 4.1.5].

6. M Suslin, co-Suslin captures the sequence (Tn(Ψ) : n < ω).

⊣

Notation 2.4 Suppose Γ is a pointclass closed under the continuous preimages, C = (M, (P,Ψ),Γ∗, A)
Suslin, co-Suslin captures Γ andM = (M, ,.G⃗,Σ). If N is a Σ-iterate of M then we set CN = (MN , (P,Ψ),Γ∗, A).
⊣

Terminology 2.5 We say that “g is < η-generic" to mean that the poset for which g is generic has size
< η. Similarly we say that “g is ≤ η generic" to mean that the poset for which g is generic has size ≤ η.
⊣

Lemma 2.6 (Correctness of backgrounds) Suppose (M, (P,Ψ),Γ∗, A) Suslin, co-Suslin captures Γ and
setM = (M, ,.G⃗,Σ). Suppose x ∈ R∩M. Let (S n,Un : n < ω) ∈ M be the sequence of trees on ω× (δ+)M

such that (S n,Un) Suslin, co-Suslin captures Tn(Ψ). Let g be < δ-generic over M. Then for any real
u ∈ M[g],

(HCM[g],Code(Ψ) ∩ M[g], u, ∈) ≺ (HC,Code(Ψ), u, ∈).

Self-capturing backgrounds are very useful for building hod pairs and proving comparison. The
following theorem of Woodin shows that under AD+, self-capturing backgrounds are abundant.

Theorem 2.7 (Woodin, Theorem 10.3 of [14]) Assume AD+. Suppose Γ is a good pointclass and there
is a good pointclass Γ∗ such that Γ ⊆ ∆Γ∗ . Suppose (N,Ψ) is Γ∗-Woodin which Suslin, co-Suslin captures
some A ∈ lub(Γ). There is then a function F defined on R such that for a Turing cone of x, F(x) =
(N∗x ,Mx, δx,Σx) is such that

1. N ∈ L1[x],

2. N∗x |δx =Mx|δx,

3. Mx is a Ψ-mouse over x: in fact,Mx =M
Ψ,#
1 (x)|κx where κx is the least inaccessible cardinal of

M
Ψ,#
1 (x) that is > δx,

4. N∗x ⊨ “δx is the only Woodin cardinal",

5. Σx is the unique iteration strategy ofMx,

6. N∗x = L(Mx,Λ) where Λ = Σx ↾ dom(Λ) and

dom(Λ) = {T ∈ Mx : T is a normal iteration tree onMx, lh(T ) is a limit ordinal and T is
below δx},

7. setting G⃗ = {(α, E⃗N
∗
x (α)) : N∗x ⊨ “lh(E⃗N

∗
x (α)) is an inaccessible cardinal < δx”} and Mx =

(N∗x , δx, G⃗,Σx), (Mx, (N,Ψ),Γ∗, A) Suslin, co-Suslin captures Γ7.
7Hence, (N∗x , δx, G⃗,Σx) is a self-capturing background.



3 Hod mice

For hod mice below ADR+Θ is regular, the definition of hod mice is given in [5]. Let us mention some
basic first-order properties of a hod premouseP. There are an ordinal λP and sequences ⟨(P(α),ΣPα ) | α <
λP⟩ and ⟨δPα | α ≤ λ

P⟩ such that

1. ⟨δPα | α ≤ λ
P⟩ is increasing and continuous and if α is a successor ordinal then P ⊨ δPα is Woodin;

2. every Woodin cardinal or limit of Woodin cardinals of P is of the form δPα for some α;

3. P(0) = Lpω(P|δ0)P; for α < λP, P(α + 1) = (LpΣ
P
α
ω (P|δα+1))P;8 for limit α ≤ λP, P(α) =

(Lp
⊕β<αΣ

P
β

ω (P|δα))P;

4. P ⊨ ΣPα is a (ω, o(P), o(P))9-strategy for P(α) with hull condensation;

5. if α < β < λP then ΣPβ extends ΣPα .

We will write δP for δP
λP

and ΣP = ⊕β<λPΣ
P
β . Note that P(0) is a pure extender model. Suppose P and

Q are two hod premice. Then P ⊴hod Q if there is α ≤ λQ such that P = Q(α). We say then that P is a
hod initial segment of Q. We say (P,Σ) is a hod pair if P is a hod premouse and Σ is a strategy for P
(acting on countable stacks of countable normal trees) such that ΣP ⊆ Σ and this fact is preserved under
Σ-iterations. Typically, we will construct hod pairs (P,Σ) such that Σ has hull condensation, (strong)
branch condensation, and is (strongly) Γ-fullness preserving for some pointclass Γ.

We say that M is a minimal model of LSA if

1. M ⊨ LSA,

2. M = L(A,R) for some A ⊆ R, and

3. for any B ∈ ℘(R) ∩ M such that w(B) < w(A), L(B,R) ⊨ ¬LSA.

It makes sense to talk about “the" minimal model of LSA. When we say M is the minimal model of LSA
we mean that M is a minimal model of LSA and Ord,R ⊆ M. Clearly from the prospective of a minimal
model of LSA, the universe is the minimal model of LSA. The proof of [7, Theorem 10.3.1] implies that
there is a unique minimal model of LSA such that Ord,R ⊆ M10. This unique minimal model of LSA is
the minimal model of LSA.

One of the main contributions of [7] is the detailed description of VHOD
Θ

assuming that the universe
is the minimal model of LSA. The early chapters of [7] deal with what is commonly referred to as the
HOD analysis. These early chapters introduce the notion of a short-tree-strategy mouse, which is the
most important technical notion studied by [7]. To motivate the need for this concept, we first recall
some of the other aspects of the analysis.

Recall the Solovay Sequence (for example, see [5, Definition 0.9] or [16, Definition 9.23]). Recall
that Θ is the least ordinal that is not a surjective image of the reals. The Solovay Sequence is a way of
measuring the complexity of the surjections that can be used to map the reals onto the ordinals below Θ.
Assuming AD, let (θα : α ≤ Ω) be a closed in Θ sequence of ordinals such that

1. θ0 is the least ordinal η such that R cannot be mapped surjectively onto η via an ordinal definable
function,

8P(α + 1) is a (g-organized) Σα-premouse in the sense defined above.
9This just means ΣPα acts on all stacks of ω-maximal, normal trees in P.

10This proof of [7, Theorem 10.3.1] shows that the common part of a divergent models of AD contains a minimal model of
LSA.



2. for α + 1 ≤ Ω, fixing a set of reals A such that A has Wadge rank θα, θα+1 is the least ordinal η
such that R cannot be mapped surjectively onto η via a function that is ordinal definable from A,

3. for limit ordinal λ ≤ Ω, θł=supα<ł θα , and

4. Ω is least such that θΩ = Θ.

It follows from the definition of LSA that if κ is the largest Suslin cardinal then it is a member of the
Solovay Sequence. It is not hard to show that LSA is a much stronger axiom than ADR+“Θ is regular".
Under LSA, letting κ be the largest Suslin cardinal, there is an ω-club C ⊆ κ such that for every λ ∈ C,
L(Γλ,R) ⊨ “ADR + λ = Θ + Θ is regular", where Γλ = {A ⊆ R : w(A) < λ}.11

Assume now that V is the minimal model of LSA. It follows from the work done in [7] that for every
κ that is a member of the Solovay Sequence but is not the largest Suslin cardinal there is a hod pair
(P,Σ) such that

1. the Wadge rank of Σ (or rather the set of reals coding Σ) is ≥ κ and

2. for some η ∈ P, lettingM∞(P,Σ) be the direct limit of all countable Σ-iterates Q of P such that
the iteration embedding πΣ

P,Q
is defined and letting πΣ

P,∞
: P → M∞(P,Σ) be the iteration map,

then VHOD
κ is the universe ofM∞(P,Σ)|πΣ

P,∞
(η)12.

A technical reformulation of the above fact appears as [7, Theorem 7.2.2].
The situation, however, is drastically different for the largest Suslin cardinal. Let κ be the largest

Suslin cardinal. The inner model theoretic object that has Wadge rank κ cannot be an iteration strategy.
This is because if Σ is an iteration strategy with nice properties like hull condensation13 then assuming
AD holds in L(Σ,R), L(Σ,R) ⊨ “M♯,Σ

1 exists and is ω1-iterable"14. This then easily implies that Σ is both
Suslin and co-Suslin. It then follows that no nice iteration strategy can have Wadge rank ≥ κ, as any
such strategy is both Suslin and co-Suslin15.

The inner model theoretic object that has Wadge rank κ is a short tree strategy, which is a partial
iteration strategy. Suppose P is any iterable structure and Σ is its iteration strategy. Suppose δ is a
Woodin cardinal of P. Given T ∈ dom(Σ) that is based on P|δ, we say that T is Σ-short if letting
Σ(T ) = b, either the iteration map πTb is undefined or πTb (δ) > δ(T ). If T is not Σ-short then we say that
it is Σ-maximal. We then set Σstc be the fragment of Σ that acts on short trees.

Following [7, Definition 3.1.4] we make the following definition.

Definition 3.1 Suppose T is a normal iteration tree of limit length. We then let

m(T ) = ∪α<lh(T )M
T
α |lh(ETα ) and m+(T ) = (m(T ))#.

In the language of the above definition, the convention used in [7] is the following: Σstc(T ) = b if
and only if

1. T is Σ-short and Σ(T ) = b, or
11This theorem is probably due to Woodin. The outline of the proof is as follows. By an unpublished theorem of Woodin

(but see [6, Theorem 1.9]), κ is a measurable cardinal, as it is a regular cardinal. It follows that there is an ω-club C consisting
of members of the Solovay sequence such that for all λ ∈ C, HOD ⊨ “λ is regular". Hence, L(Γλ,R) ⊨ “ADR + λ = Θ + Θ is
regular". For the proof of the last inference see [1, Theorem 2.3].

12Thus, πΣ
P,∞(η) = κ.

13Σ must also satisfy some form of generic interpretability, i.e., there must be a way to interpret Σ on the the generic
extensions ofM♯,Σ

1 .
14This can be proved by a Σ2

1-reflection argument.
15It follows from the theory of Suslin cardinals under AD that κ cannot be the largest Suslin cardinal, see [?, Chapter 3].



2. T is Σ-maximal and b = m+(T ).

Thus, Σstc tells us the branch of a Σ-short tree or the last model of a Σ-maximal tree.
The reader can perhaps imagine many ways of defining the notion of short tree strategy without a

reference to an actual strategy. The convention that we adopt here is the following. If Λ is a short tree
strategy for P then we will require that

1. for some P-cardinal δ, P = (P|δ)# and P ⊨ “δ is a Woodin cardinal",

2. if δ is as above and ν is the least < δ-strong cardinal of P then P ⊨ “ν is a limit of Woodin
cardinals",

3. given an iteration tree T ∈ dom(Λ), Λ(T ) is either a cofinal well-founded branch of T or is equal
to m+(T ),

4. for all iteration trees T ∈ dom(Λ), if Λ(T ) is a branch b then πTb (δ) > δ(T ),

5. for all iteration trees T ∈ dom(Λ), if Λ(T ) is a model then m+(T ) ⊨ “δ(T ) is a Woodin cardinal".

If a hod mouse P has properties 1 and 2 above then we say that P is of #-lsa type. [7, Definition 2.7.3]
introduces other types of LSA hod premice.

The set of reals that has Wadge rank κ is some short tree strategy Λ. The hod mouse P that Λ
iterates has a unique Woodin cardinal δ such that if ν < δ is the least cardinal that is < δ-strong in P,
then P ⊨ “ν is a limit of Woodin cardinals". The aforementioned Woodin cardinal δ is also the largest
Woodin cardinal of P. This fact is proven in [7] (for example, see [7, Theorem 7.2.2] and [7, Chapter
8]). There is yet another way that the LSA stages of the Solovay Sequence are different from other
points.

We continue assuming that V is the minimal model of LSA. If Σ is a strategy of a hod mouse
with nice properties then ordinal definability with respect to Σ is captured by Σ-mice. More precisely,
[7, Theorem 10.2.1] implies that if x and y are reals then x is ordinal definable from y using Σ as a
parameter if and only if there is a Σ-mouseM over y16 such that x ∈ M.

[7, Theorem 10.2.1] also implies that the same conclusion is true for short tree strategies. Namely,
if Λ is a short tree strategy then for x and y reals, x is ordinal definable from y using Λ as a parameter
if and only if there is a Λ-mouse M over y such that x ∈ M. Theorems of this sort are known as
Mouse Capturing theorems. Such theorems are very important when analyzing models of determinacy
using inner model theoretic tools.

For a strategy Σ the concept of a Σ-mouse has appeared in many places. The reader can consult [5,
Definition 1.20] but the notion probably was first mentioned in [12] and was finally fully developed in
[9].

A Σ-mouseM, besides having an extender sequence also has a predicate that indexes the strategy.
The idea, which is due to Woodin, is that the strategy predicate should index the branch of the least tree
that has not yet been indexed.

Unfortunately this idea doesn’t quite work for Λ-mice where Λ is a short tree strategy. In the next
subsection, we will explain the solution presented in [7].

16The difference between a mouse and a mouse over y is the same as the difference between L and L[x].



3.1 Short tree strategy mice

We are assuming that V is the minimal model of LSA. Suppose Λ is a short tree strategy for a hod mouse
P. We let δ be the largest Woodin cardinal of P. Thus, P = (P|δ)#.

In general, when introducing any notion of a mouse one has to keep in mind the procedures that
allow us to build such mice. Formally speaking, many notions of Λ-mice might make perfect sense, but
when we factor into it the constructions that are supposed to produce such mice we run into a key issue.

In any construction that produces some sort of mouse (e.g. Kc-constructions, fully backgrounded
constructions, etc) there are stages where one has to consider certain kinds of Skolem hulls, or as inner
model theorists call them fine structural cores. The reader can view these cores as some carefuly defined
Skolem hulls. To illustrate the aformentioned problem, imagine we do have some notion of Λ-mice
and let us try to run a construction that will produce such mice. Suppose T is a tree according to Λ
that appears in this construction. Having a notion of a Λ-mouse means that we have a prescription for
deciding whether Λ(T ) should be indexed in the strategy predicate or not.

Suppose T is a Λ-maximal tree. It is hard to see exactly what one can index so that the strategy
predicate remembers that T is maximal. And this “remembering" is the issue. Imagine that at a later
stage we have a Skolem hull π : M → N of our current stage such that T ∈ rng(π). It is possible
that U =de f π

−1(T ) is Λ-short. If we have indexed X in our strategy that proves Λ-maximality of T
then π−1(X) now can no longer prove thatU is Λ-maximal. Thus, the notion of Λ-mouse cannot be first
order.

The solution is simply not to index anything for Λ-maximal trees. This doesn’t quite solve the
problem as the above situation implies that nothing should be indexed for many Λ-short trees as well.
To solve this problem, we will only index the branches of some Λ-short trees, those that we can locally
prove are Λ-short. We explain this below in more details.

Fix an lsa type hod premouse P and let Λ be its short tree strategy. Let δ be the largest Woodin
cardinal of P and ν be the least < δ-strong of P. To explain the exact prescription that we use to
index Λ, we explain some properties of the models that have already been constructed according to this
indexing scheme. SupposeM is a Λ-premouse.

Call T ∈ M universally short (uvs) if T is obviously short (see [7, Definition 3.3.2]). For instance,
it can be that the #-operator provides a Q-structure and determines a branch c of T such that Q(c,T )17

exists and Q(c,T ) ⊴ m+(T ). Another way that a tree can be obviously short is that there could be a
model Q in T such that πT

P,Q
: P → Q is defined and the portion of T that comes after Q is based on

Qb. Here Qb is defined as Q|(κ+)Q, where κ is the supremum of the Woodin cardinals below the largest
Woodin of Q. The reader should keep in mind that there is a formula ζ in the language of Λ-premice
such that for any Λ-premouseM and for any iteration tree T ∈ M, T is uvs if and only ifM ⊨ ζ[T ].

Unfortunately there can be trees that are not universally short (nuvs). Suppose then T is nuvs.
In this case whether we index Λ(T ) or not depends on whether we can find a Q-structure that can be
authenticated to be the correct one. There can be many ways to certify a Q-structure, and [7] provides
one such method. An interested reader can consult [7, Section 3.7]. Notice that because P has only
one Woodin cardinal, not being able to find a Q-structure is equivalent to the tree being maximal. Thus,
in a nutshell the solution proposed by [7] is that we index only branches that are given by internally
authenticated Q-structures.

Suppose now that we have the above Skolem hull situation, namely that we have π : M → N and
T in N that is Λ-maximal but π−1(T ) is short. There is no more indexing problem. The reason is

17MTc is a direct limit along the models of c. Q(c,T ) is the largest initial segment of MTc such that Q(c,T ) ⊨ “(.T ) is a
Woodin cardinal". It is only defined provided that (.T ) is not a Woodin cardinal for some function definable overMTc .



that in order to index Λ(π−1(T )) in M we need to find an authenticated Q-structure for π−1(T ). The
authentication process is first order, and so if N does not have such an authenticated Q-structure for T
thenM cannot have such an authenticated Q-structure for π−1(T ).

The authentication procedure is internal to the mouse. More precisely, the following holds:

Internal Definability of Authentication: there is a formula ϕ in the appropriate language such that
whenever (P,Λ) is as above andM is a Λ-mouse over some set X such that P ∈ X, for any iteration tree
T ∈ M,M ⊨ ϕ[T ] if and only if T ∈ dom(Λ), T is short and Λ(T ) ∈ M.

We again note that the Internal Definability of Authentication (IDA) is only shown to be true for the
minimal model of LSA. In general, IDA cannot be true as there can be short trees without Q-structures.
The authors have recently discovered another short tree indexing scheme that can work in all cases, but
has some weaknesses compared to the one introduced in [7].

Using the notation in [7], recall that Pb is the “bottom part" of P, i.e Pb = P|(ν+)P, where ν is the
supremum of the Woodin cardinals below the top Woodin of P.

We now describe another key feature of the indexing scheme of [7] that is of importance here. We
say Σ is a low level component of Λ if there is a tree T on P according to Λ such that πT ,b exists18

(T may be ∅) and for some R ⊴ πT ,b(Pb), Σ = ΛR. Let LLC(Λ) be the set of Σ that are a low level
components of Λ. What is shown in [7] is that Λ is determined by LLC(Λ) in a strong sense.

Given a transitive model M of a fragment of ZFC such that P ∈ M we say M is closed under
LLC(Λ) if whenever T ∈ M is a tree according to Λ such that πT ,b exists, ΛπT ,b(Pb) has a universally
Baire representation over M. More precisely, whenever g ⊆ Coll(ω, πT ,b(Pb)) is M-generic, for every
M-cardinal λ there are trees T, S ∈ M[g] on λ such that M[g] ⊨ “(T, S ) are < λ-complementing" and for
all < λ-generics h, (p[T ])M[g∗h] = Code(ΛπT ,b(Pb))∩M[g ∗ h]. Here Code(Φ) is the set of reals coding Φ
(with respect to a fixed coding of elements of HC by reals).

It is shown in [7] that if, assuming AD+, (M,Σ) is such that

1. M is a countable model of a fragment of ZFC,

2. M has a class of Woodin cardinals,

3. Σ is an ω1-iteration strategy for M and

4. whenever i : M → N is an iteration via Σ, N is closed under LLC(Λ),

then there is a formula ψ such that whenever g is M-generic, for any T ∈ M[g],

T is according to Λ if and only if M[g] ⊨ ψ[T ]. (⋆)

The interested reader can consult Chapters 5, 6 and 8 of [7].
The reason we explained the above is to give the reader some confidence that defining a short tree

strategy Λ for a hod premose P is equivalent to describing the set LLC(Λ). This fact is the reason that
the indexing schema of [7] works in the following sense.

Being able to define short-tree-strategy mice is one thing, proving that they are useful is another.
Usually what needs to be shown are the following two key statements. We let ϕsts be the formula that is
mentioned in the Internal Definability of Authentication.

18πT ,b is the restriction of the iteration embedding to Pb. See [7], just after Definition 2.7.21, for a more detailed definition.
Note that in some cases, πT ,b may exist but πT may not.



The Eventual Authentication. Suppose (P,Λ) is as above andM is a sound Λ-mouse over some
set X such that P ∈ X andM projects to X. Suppose T ∈ M is according to Λ and is Λ-short. Suppose
further thatM ⊨ ¬ϕsts[T ]. Then there is a soundΛ-mouseN over X such thatM⊴N andN ⊨ ϕsts[T ].19

Mouse Capturing for Λ: Suppose (P,Λ) is as above. Then for any x ∈ R that codes P and any
y ∈ R, y is ordinal definable from x and Λ if and only if there is a Λ-mouseM over x such that y ∈ M.

Both The Eventual Authentication and Mouse Capturing for Λ are proven in [7] (see [7, Chapter 8,
Lemma 8.1.3, Lemma 8.1.5] and [7, Theorem 10.2.1]).

The next subsection discusses the Q-structure authentication process mentioned above.

3.2 The authentication method

Suppose P is a #-lsa type hod premouse. Recall from the previous subsections that this means that P
has a largest Woodin cardinal δ such that P = (P|δ)# and the least < δ-strong cardinal of P is a limit
of Woodin cardinals. We let δP be the largest Woodin cardinal of P and κP be the least < δP-strong
cardinal of P. We shall also require that P is tame, meaning that for any ν < δP, if (P|ν)# is of lsa type
andM ◁ P is the largest such thatM ⊨ “ν is a Woodin cardinal" then ν is not overlapped inM20.

Our goal here is to explain the Q-structure authentication procedure employed by [7]. Recall our
discussion of uvs and nuvs trees. The Q-structure authentication procedure applies to only nuvs trees,
trees that are not obviously short.

[7, Chapters 3.6-3.9] develop the aforementioned authentication procedure. [7, Definition 3.8.9,
3.8.16, 3.8.17] introduce the sts indexing scheme. For illustrative purposes, it is better to think of the
indexing scheme introduced there as a hierarchy of indexing schemes indexed by ordinals. Naturally,
this hierarchy is defined by induction. For illustrative purposes we call γth level of the hierarchy stsγ.
Thus, stsγ(P) is the set of all sts premice that are based on P (i.e., their short tree strategy predicate
describes a short tree strategy for P) and have rank ≤ γ.

To begin the induction, we let sts0(P) be the set of all sts premice that do not index a branch for any
nuvs tree. More precisely, ifM ∈ sts0(P) and T ∈ dom(SM) then if SM(T ) is defined then T is uvs.

Below and elsewhere, SM is the strategy predicate of M. Given stsα(P) we let stsα+1(P) be the
set of all sts premice that index branches of those nuvs trees that have a Q-structure in stsα(P). More
precisely, supposeM ∈ stsα+1(P) and T ∈ dom(SM) and SM(T ) is defined. Then either

1. T is uvs or

2. T is nuvs and there is Q ∈ M such thatM ⊨ “Q ∈ stsα(P)”, m+(T ) ◁ Q, Q ⊨ “δ(T ) is a Woodin
cardinal" but δ(T ) is not a Woodin cardinal with respect to some function definable over Q21 and
there is a cofinal branch b of T such that Q ◁MTb .

When Q exhibits the properties listed in clause 2 we say that Q is a Q-structure for T . It follows from
the zipper argument of [3, Theorem 2.2] that for each Q-structure Q there is at most one branch b with
properties described in clause 2 above. However, there is nothing that we have said so far that guarantees
the uniqueness of the Q-structure itself. The uniqueness is usually a consequence of iterability and

19One can then prove that there is such an N that projects to X.
20This means that if E ∈ E⃗M then ν < (crit(E), index(E)).
21This can be written as J1(Q) ⊨ “δ(T ) is not a Woodin cardinal".



comparison (see [15, Theorem 3.11])22. Thus, to make the definition of stsα+1 complete, we need to
impose an iterability condition on Q.

The exact iterability condition that one needs is stated as clause 5 of [7, Definition 3.8.9]. This clause
may seem technical, but there are good reasons for it. For the purposes of identifying a unique branch b
saying that Q in clause 2 is sufficiently iterable inM would have sufficed. However, recall the statement
of the Internal Definability of Authentication. The problem is that when we require that anM as above
is a Λ-premouse we in addition must say that the branch b that the Q-structure Q defines is the exact
same branch that Λ picks. To guarantee this, we need to impose a condition on Q such that Q will be
iterable not just inM but in V . The easiest way of doing this is to say that Q has an iteration strategy
in some derived model as then, using genericity iterations (see [15, Chapter 7.2]), we can extend such a
strategy for Q to a strategy that acts on iterations in V .

For limit α, stsα(P) is essentially
⋃
β<α stsβ(P). What has been left unexplained is the kind of

strategy that the Q-structure Q must have in some derived model. Let Σ be this strategy. IfM ∈ stsα(P)
is a Λ-mouse then Q must be a Λm+(T )-mouse over m+(T ). Thus, our next challenge is to find a first
order way of guaranteeing that Σ-iterates of Q are Λm+(T )-mice, even those iterates that we will obtain
after blowing up Σ via genericity iterations.

The solution that is employed in [7] is that if R is a Σ-iterate of Q and U ∈ dom(S R) then U itself
is authenticated by the extenders ofM. Below we refer to this certification as tree certification. This is
again a rather technical notion, but the following essentially illustrates the situation.

Let us suppose R = Q andU ∈ dom(S Q). The indexing scheme of [7] does not index all trees in P.
In other words, SM is never total. dom(SM) consists of trees that are built via a comparison procedure
that iterates P to a background construction of M. Set N = m+(T ). One requirement is that N also
iterates to one such background construction to whichP also iterates. Let S be this common background
construction and suppose α+1 < lh(U) is such that α is a limit ordinal. First assumeU ↾ α is uvs. What
is shown in [7] is that knowing the branch of P-to-S tree there is a first order procedure that identifies
the branch ofU ↾ α, and that procedure is the tree certification procedure applied toU ↾ α.

Suppose next that U ↾ α is nuvs. Then because α + 1 < lh(U), U ↾ α must be short and the
branch chosen for it in Q must have a Q-structure Q1 which is itself an sts mouse. We have that Q1 ∈ Q

and Q1 must have the same certification in Q that Q has inM. Again, the nuvs trees in Q1 have a tree
certification in Q according to the above procedure. The uvs ones produce another Q2 ∈ Q1. Because
we cannot have an infinite descent, the definition of tree certification is meaningful.

Remark 3.2 It is sometimes convenient to think of a short tree strategy as one having two components,
the branch component and the model component. Given a short tree strategy Λ, we let b(Λ) be the set
of those trees T ∈ dom(Λ) such that Λ(T ) is a branch of T , and we let m(Λ) be the set of those trees
T ∈ dom(Λ) such that Λ(T ) is a model.

The convention adopted here is that if T ∈ m(Λ) then Λ(T ) = m+(T )23. Thus, if M is an sts
premouse then SM is a short tree strategy in the above sense, i.e., for T < b(SM), SM(T ) is simply left
undefined.

22In general, the theory of Q-structures doesn’t have much to do with sts mice. It will help if the reader develops some
understanding of [15, Chapter 6.2 and Definition 6.11].

23It is not up to us to decide whether Λ(T ) ∈ m(Λ) or Λ(T ) ∈ b(Λ). The short-tree strategy itself decides this.



4 Proof of Theorem 1.2

We assume (P,Σ) is a hod pair or a sts hod pair. Recall the terminology of meek, etc associated with
hod premice from [7].

1. (Meek) There is δ such that

(a) P ⊨ “δ is a Woodin cardinal or a limit of Woodin cardinals",

(b) δ is a cutpoint of P24,

(c) if κ < ord(P) is a limit of Woodin cardinals of P then oP(κ) < δ,

(d) P ⊨ ZFC − Replacement and

(e) if δ is a Woodin cardinal ofP thenP =
⋃

n<ωP|(δ+n)P, and if δ is a limit of Woodin cardinals
of P then δ is the largest cardinal of P.

2. (Non-meek) There is δ ≤ ord(P) such that

(a) there is κ < δ such that δ ≤ oP(κ),

(b) if κ is the least η < δ such that δ ≤ oP(η) then oP(κ) = δ and P ⊨ “κ is a limit of Woodin
cardinals",

(c) letting κ < δ be the least such that oP(κ) = δ, ρ(P) ∈ (κ, δ] or ord(P) is a limit of ordinals ξ
such that ρ(P||(ξ, ω)) ∈ (κ, δ].

(d) P is δ-sound,

(e) if dom(E⃗P) ∩ (δP, ord(P)] = ∅ then Jω[P] ⊨ “δP is not a Woodin cardinal".

3. (Gentle) δ =de f ord(P) is a limit of Woodin cardinals of P and P ⊨ ZFC − Replacement.

We let δP be the δ above. We say P is of lsa type if

1. P is properly non-meek,

2. P ⊨ “δP is a Woodin cardinal"

Let α = min(dom(E⃗P)− δP) (if exists). We then say that P is of #-lsa type if P|α = P and Jω[P] ⊨ “δP

is a Woodin cardinal". We say P is of successor type if P is meek and δ = δP is a Woodin cardinal in P.
We now recall fullness preservation and branch condensation.

Definition 4.1 (Γ-Fullness preservation) Suppose (P,Σ) is a hod pair or an sts hod pair25 such that
P ∈ HC and Γ is a projectively closed pointclass. We say Σ is Γ-fullness preserving if the following
holds for all (T ,Q) ∈ I(P,Σ).

1. For all meek layers R of Q such that R is of successor type, letting S = R−26, for all η ∈
(ord(S), ord(R)) if η is a cutpoint cardinal of R then

(R|(η+)R)∗ = LpΣS,T (R|δ).

2. For all meek layers R of Q such that R is of limit type,

24This condition follows from the other conditions, but we would like to isolate it.
25Recall that if (P,Σ) is an sts hod pair then P = (P|δP)#. See Definition ??.
26This is the longest proper layer of R.



R = LpΣR|δR ,T (R|δR).

3. If P is of #-lsa type then LpΓ,Σ
stc
Q,T (Q) ⊨ “.Q is a Woodin cardinal"27.

Definition 4.2 (Strongly Γ-fullness preserving) Suppose (P,Σ) is a hod pair or an sts hod pair and Γ
is a pointclass. We say Σ is strongly Γ-fullness preserving if Σ is Γ-fullness preserving and whenever

1. T is a stack according to Σ with last model S such that if P is of limit type then πT ,b exists and
otherwise πT exists, and

2. R is such that there are elementary embedding (σ, τ) with the property that

(a) if P is of limit type then σ : Pb → R, τ : R → Sb and πT ,b = τ ◦ σ, and

(b) if P is of successor type then σ : P → R, τ : R → S and πT = τ ◦ σ,

then the τ-pullback strategy of ΣSb,T if 2(a) holds and of ΣS,T if 2(b) holds is Γ-fullness preserving.
Following Definition 4.1 we can also define the meaning of strongly almost Γ-fullness preserving as
well as the meaning of strongly low-level Γ-fullness preserving. ⊣

The definition of branch condensation for strategies is standard and can be found in [5]. We define
branch condensation for st strategies.

Definition 4.3 (Branch condensation for st-strategies) Suppose (P,Σ) is such that P is a hod-like #-
lsa type lses and Σ is a st-strategy forP. We say Σ has branch condensation if whenever (T ,Q,U,R, τ,S, c, α, b)
is such that

1. (T ,Q), (U,R) ∈ Ib(P,Σ),

2. α < λR
b

and δR(α+1) is a Woodin cardinal of R,

3. S is a normal iteration tree of limit length according to ΣRb,U that is based on R(α + 1) and is
above δRα ,

4. c is a branch of S such that πSc exists, and

5. τ :MSc → Q(b) and πT ,b = τ ◦ πSc ◦ π
U,b

then c = ΣR,U(S). ⊣

We first prove:

Lemma 4.4 L(Σ,R) ⊨ MC(Σ).

Proof. For simplicity, we assume Σ = ∅. The general is only more notationally more complicated.
Suppose y ∈ OD(x). Let β be the least such that y ∈ ODβ(x) i.e. there is a formula φ and some β⃗ ∈ α<ω

such that for all x̄,
x̄ = x⇔ Jβ(R) ⊨ φ[x̄, β⃗, x].

By minimality of β, β is a critical ordinal (cf. [13]). Suppose k is the least such that ρk(Jβ(R)) = R,
then ΣJβ(R)

2n+k and ΠJβ(R)
2n+k+1 have the scale property. Let Γ = ΣJβ(R)

2n+k for some sufficiently large n such that
y ∈ OD(x) as witnessed by a Γ formula.

27Here, if Σ is a short tree strategy then Σstc = Σ.



Claim 4.5 There is a Turing cone of real z such that if u ∈ ODβ(z) as witnessed by a Γ-formula then
there is a z-mouse M such that u ∈ M and M has an ω1-iteration strategy in Jβ+1(R). In fact, the
operator z 7→ CΓ(z) is fine-structural as witnessed in Jβ+1(R).

Proof. It suffices, by Rudominer-Steel (cf.[10]), to show for any real y, there is y ≤T x and an x-mouse
R such that CΓ(x) ⊊ R ∩ R and R is ω1-iterable in Jβ+1(R).

Let A be a universal Γ-set and (M, δ,Σ) be a Γ-Woodin mouse that Suslin captures A (as witnessed
by T, S ) and that Σ ∈ Jβ+1(R) and M ⊨ “δ is Woodin." Let (Nη : η ≤ δ) be the models of the L[E, y]-
construction of M. Let π : M∗ → M be such that S ,T ∈ ran(π), ran(π) ∩ δ = γ ∈ δ, and γ is not
Woodin in Nδ =de f Q. Because S ,T ∈ ran(π), CΓ(Q|γ) ⊂ M∗ and hence η is Woodin with respect to all
A ∈ CΓ(Q|γ). Let ξ > γ be the least such that there is a subset of γ in Q|γ + 1 =de f P but not in CΓ(Q|γ).

Let x ∈ R code a generic g ⊂ Col(ω,Q|γ). So y ≤T x and there is a bx ∈ P[x] such that bx < CΓ(x).
P[x] can be re-arranged into an x-mouse R. Since R’s iteration strategy can be computed from P’s
strategy, R is iterable in Jβ+1(R). This proves the claim. □

Since y ∈ CΓ(x), we want to show there is an x-mouseM iterable in Jβ+1(R) such that y ∈ M. Let B ∈ Γ
and ξ < ω1 be such that y is unique with (y, z, x) ∈ B for any z coding ξ. Since Γ has the scale property

(CΓ(x), B ∩CΓ(x)) ≺Σ1 (R, B).

We may also assume B codes the (2n + k)th-reduct of Jβ(R), and therefore, the fact that (CΓ(x), B ∩
CΓ(x)) ≺Σ1 (R, B) gives a Σ2n+k-elementary embedding

π : Jβ̄(CΓ(x))→ Jβ(R)

for some β̄ ≤ β. The above fact holds for any real z, not just x.
By the claim and its proof, fix z∗ such that for any z∗ ≤T z, there is a z-mouse in Jβ+1(R) whose

reals are those in CΓ(z). Let Ω = ΣJβ(R)
2n+k+2 and (M, δ,Σ) be a coarse Ω-Woodin mouse in Jβ+1(R) such

that z∗, x ∈ M. Let (Nη : η ≤ δ) be the models of the L[E, x]-construction in M. Let Q = Nδ and as
above, fix γ < ξ < δ such that Q|ξ projects to γ and defines a subset of γ not in CΓ(Q|γ ∪ {x, z∗}). Note
that P = Q|ξ ⊨ “γ is Woodin" and also that {x, z∗} is P-generic over P, where P is the extender algebra
defined in P.

Let z code a Col(ω,Q|γ ∪ {x, z∗)-generic. We can re-arrange P[z] into a z-mouse R as before. Note
that

CΓ(z) = R ∩ R.

Since x ≤T z, y ∈ R. Furthermore, y is definable over Jβ̄(CΓ(z)) for some countable β̄ and the least such
model is in R. So y is OD in R. Therefore, y ∈ Q. □

Now we prove the theorem. Let R ⊴c
hod P be the least layer of P. We want to show that

(1) L(Σ,R) ⊨ “Mouse Capturing holds for ΣR”.

The general case is only notationally more complex. Suppose x, y ∈ R are such that L(Σ,R) ⊨ “y ∈
ODΣR(x)”. It follows from Theorem 1.2 that there is a Σ-mouseM over (P, x) containing y such thatM
has an iteration strategy in L(Σ,R). In fact, it follows from Theorem 1.2 that

(2) for every Q ∈ pI(P,Σ) there is a ΣQ-mouse M over (Q, x) such that y ∈ M and M has an itera-
tion strategy in L(Σ,R).28

28This is because L(ΣQ,R) = L(Σ,R) and L(ΣQ,R) ⊨ MC(ΣQ).



Let MQ be the least ΣQ-mouse over (Q, x) such that y is definable over MQ. Let ΛQ be the iteration
strategy ofMQ (witnessing thatMQ is a ΣQ-mouse). Let Γ∗ ∈ L(Σ,R) be a good pointclass such that the
set

A = {(z, u) ∈ R2 : z codes someMQ and u is an iteration according to ΛQ}

is in ∆Γ∗ . Let F be as in Theorem 2.7 for Γ∗ and let z ∈ dom(F) be such that if F(z) = (N∗z ,Mz, δz,Σz)
then (N∗z , δz,Σz) Suslin, co-Suslin captures Σ and the set A. Let N = (Le(∅, x))N

∗
z |δz . It follows from

Theorem 1.3 that

(3) there is a Q ∈ N such that ΣQ ↾ N ∈ J[N].

It follows from the universality ofN thatMQ ∈ N (this is because (Le((Q,ΣQ))N is universal inN∗z and
the strategy ΛQ ofMQ is captured by N∗z (via A)). It then follows that y ∈ N . As N is an x-mouse, this
completes the proof.

Remark 4.6 The case (P,Σ) is anomalous is handled as in [5, Lemma 6.22]. The main issue is we
cannot use Theorem 1.3 as (Q,ΣQ) need not be fullness preserving.

5 Proof of Lemma 1.4

Given a set of reals A ⊆ R, we let WA = {B ⊆ R : w(B) < w(A)}. Next following Definition 3.13 of [4],
we say A ⊆ R is a new set if

1. L(A,R) ⊨ AD+,

2. ℘(R) ∩ L(WA,R) = WA,

3. ΘL(WA,R) is a Suslin cardinal of L(A,R).

The following is [4, Definition 3.17].

Definition 5.1 Given a pointclass Γ, we say Γ is completely mouse full if either Γ = ℘(R) or there is a
new set A such that

1. Γ = WA,

2. if (P,Σ) is allowable (see [7, Definition 3.10.7] such that Code(Σ) ∈ Γ and L(A,R) ⊨ “Σ has
strong branch condensation and is Γ-fullness preserving" then for every a ∈ HC,

LpΓ,Σ(a) = (LpΣ(a))L(A,R).

⊣

Given two pointclasses Γ1 and Γ2, we write Γ1 ◁mouse Γ2 if Γ1 ⊆ Γ2 and Γ2 has the same mice as
Γ1 relative to common iteration strategies. More precisely, if (P,Σ) ∈ Γ1 is an allowable pair such that
L(Γ2,R) ⊨ “Σ has strong branch condensation and is Γ1-fullness preserving" then for any a ∈ HC,

LpΓ1,Σ(a) = LpΓ2,Σ(a).



Finally, following [4, Definition 3.18],

Definition 5.2 Γ is mouse full if either it is completely mouse full or is a union of completely mouse full
pointclasses (Γα : α < ΩΓ) such that for all α, Γα ◁mouse Γα+1 and for all limit α, Γα =

⋃
β<α Γβ.

In this subsection we outline the proof of Lemma 1.4. Suppose that there is no hod pair or an sts hod
pair (P,Σ) such that

1. Σ has strong branch condensation and is strongly fullness preserving,

2. Γ(P,Σ) ⊆ Γ ⊆ L(Σ,R)

The following theorem is the key "Generation of Mousefull Pointclass" Theorem ([5, Theorem 6.1] and
[7, 10.1.2]). We operate under the assumption that there is no Γ such that L(Γ,R) ⊨ LSA but there is a
Suslin cardinal above w(Γ).

Theorem 5.3 (AD+ + V = L(℘(R))) Suppose Γ ⊊ ℘(R) is a mousefull pointclass such that Γ ⊨ SMC.
Then there is a hod pair or sts hod pair or an anomalous pair (P,Σ) that generates Γ.29

Lemma 5.4 Suppose (P,Σ) ∈ Γ is a hod pair such that Σ has strong branch condensation and being
super fullness preserving. Then on a cone of z, LpΣ(z) = LpΓ,Σ(z).

Proof. Fix (P,Σ) ∈ Γ and suppose on a cone of z, there isMz◁LpΣ(z) such that lettingΦz be the iteration
strategy ofMz (as a Σ-mouse), Φz < Γ.

Claim 5.5 y is in a Σ-mouse over (P, x). Furthermore, whenever (Q,ΣQ) ∈ I(P,Σ), y is in a ΣQ-mouse
over (Q, x).

Proof. Let Γ∗ be a good, scaled pointclass such that ∆Γ∗ contains ℘(R) ∩ Lα+1(Γ,R) and the function
z 7→ Φz. Let (N∗z , δz,Σz) Suslin, co-Suslin captures a universal Γ∗ set (and other necessary sets like Σ
etc) for some z ≥T x, y. Let (Nα : α ≤ δz) be the models in the L[E,Σ][P, x]-construction of N∗z and
N = Nδz.

Let (δi : i < ω) enumerate the first ωWoodin cardinals ofN and let λ = supiδi. Let M be the derived
model at λ as computed in N∗z [g] for some generic g ⊆ Col(ω, < λ). Let w ∈ N∗z [g] code N|δ0, g ↾ δ0

and N|δ0, g ↾ δ0 codes w. There is some Q ◁ N such that Q[w] is equivalent toMw and that Φw ∈ M
and therefore (the interpretation of) Γ is in M. So M ⊨ y ∈ OD(x). This implies y ∈ N as desired.

The furthermore clause is similar. □

Using the claim, we let for any (Q,ΣQ) ∈ I(P,Σ), MQ be the least ΣQ-mouse over (Q, x) containing y
and ΦQ be its strategy. Let A⊆ R code the set {(MQ,ΦQ) : (Q,ΣQ) ∈ I(P,Σ)}.

Let Γ∗ be a good pointclass such that Σ, x 7→ Lp(x), A ∈ ∆Γ∗ and let u ∈ R be such that (N∗u , δu,Σu)
Suslin captures a universal Γ∗ set. Let N be the last model of the L[E][x]-construction in N∗u |δu. By
Theorem 1.3, there is (Q,ΣQ) ∈ I(P,Σ) such that ΣQ ↾ N ∈ L[N]. By universality of N , noting we can
compareMQ vs Nin N∗u ,MQ ◁N . Therefore, y ∈ N . This contradicts our assumption that y does not
belong to any mouse over x.

□

Now we finish the proof of Lemma 1.4. Let A be the set of hod pairs or sts hod pairs (P,Σ) such that
Code(Σ) ∈ Γ and Σ has strong branch condensation and is strongly fullness preserving.

29(P,Σ) may be anomalous as defined in [5, 7]. Here “generate" means: if (P,Σ) is a hod pair, then Γ(P,Σ) = Γ and if (P,Σ)
is an sts pair, then Γb(P,Σ) = Γ.



Claim 5.6 A , ∅. Furthermore, if (P,Σ) ∈ A, then there is a hod pair (Q,Λ) ∈ A such that λQ is a
successor ordinal and (Q−,ΛQ−) ∈ I(P,Σ).

Proof. To see A , ∅. Let Γ′ be a good pointclass such that Mice ∈ ∆Γ′ and there is sjs C⃗ = (Ci : i <
ω) ∈ ∆Γ′ such that C0 = Mice. Note that by Lemma 5.4, Mice ∈ Γ. Let z be such that (N∗z , δz,Σz)
Suslin, co-Suslin captures Mice and C⃗ as in Theorem 2.7. Then the first model (P0,Σ0) of the hod pair
construction of N∗z exists. Let (P,Σ) = (P0,Σ0). We have that Σ is fullness preserving and has branch
condensation. Moreover, Code(Σ) ∈ Γ∗ as otherwise Γ ⊆ L(Σ,R). Hence, (P,Σ) ∈ A.

Now suppose (P,Σ) ∈ A. There is a β such that the hod pair construction ofN∗z (possibly a different
coarse Woodin mouse from the above) reaches a pair (Pβ,Σβ) ∈ I(P,Σ). The pair (Q,Λ) is the next hod
pair (Pβ+1,Σβ+1) in this construction. Such a pair exists provided

1. Nβ+1 doesn’t project across δPβ =de f δβ,

2. if β = γ + 1 then Nβ+1 ⊨ δβ is Woodin,

3. if β is limit, no levels of Nβ+1 projects across δβ and (δ+β )Nβ = (δ+β )Pβ .

We can rule out each case by standard arguments (e.g. see the argument in the proof of [5, Theorem
6.1]). For example, if in (1), there is a level Q ◁Nβ+1, that projects across δβ, letting Λ be its strategy.
The key point is (Q,Λ) is an anomalous hod pair; so using the proof of Lemma 4.4, we can show
L(Λ,R) ⊨ MC(Λ)+∀R◁c

hodPMC(ΛR). This allows us to analyze HOD of L(Λ,R) and show that letting
A ⊆ ρ1(R) < δβ30 be Σ1-definable over R from p1(R) and A < R, then A ∈ OD(ΛR(β) = Σβ. By MC(Σ) in
L(Λ,R) and the fact that Pβ ◁ R is full, A ∈ R. Contradiction. □

It follows from the above claim that if

Γ1 =
⋃

(P,Σ)∈A Γ(P,Σ)

then

(1) Γ1 is a mouse full pointclass such that for some limit ordinal α there is a sequence of mouse full
pointclasses (Γβ : β < α) such that for < γ < α, Γβ ◁mouse Γγ and Γ1 =

⋃
β<α Γβ.

It follows from Theorem 5.3 that there is a possibly anomalous hod pair (P,Σ) such that either

1. P is of lsa type and Γb(P,Σ) = Γ1 or

2. P is not of lsa type and Γ(P,Σ) = Γ1.

Because Γ ⊨ SMC and because Γ1 ⊴mouse ℘(R), we must have that Σ is strongly fullness preserving (for
instance see [4, Lemma 6.21]). Notice that we get a hod pair as opposed to an sts pair. This is because
we have good pointclasses beyond Γ.

Notice also that Code(Σ) < Γ, as otherwise it follows from the claim that (P,Σ) ∈ A. Thus, it must
be the case that P is an anomalous hod premouse. We now get a standard contradiction as in the proof
of Theorem 6.1 of [4], where it is argued that the computation of HODL(Σ,R) gives a contradiction.

30For simplicity, assume ρ1(R) < δβ.



6 Proof of Theorem 1.3

We outline the main ideas in the proof of Theorem 1.3.

6.1 Basic notions and main ideas

We are in fact working towards the proof of Theorem 1.3, and the notation and the terminology of
this subsection will be used in the later subsections. Fix (P,Σ), Γ1, F and z as in the statement of
Theorem 1.3. Let N = (Le(∅))N

∗
z . ⊣

Goal: We are looking for Q ∈ pI(P,Σ) ∩ N such that ΣQ ↾ N ∈ J[N].
We start working in N∗z . Without loss of generality we can assume that

(1) whenever R ∈ pB(P,Σ) ∩ (N∗z |.z) there is S ∈ pI(R,ΣR) ∩ N such that ΣS ↾ N ∈ J[N].

As in [4], there are several cases.

1. P is of successor type.

2. P is of limit type and P is meek.

3. P is non-meek but P is not of #-lsa type.

4. (P,Σ) is an sts hod pair.

The first two cases are just like the cases considered in [4, Theorem 6.5], i.e. the “ADR+Θ is regular"
case. For the remaining two cases we need more ideas to be discussed below.

Definition 6.1 Suppose for a moment that we are working in some model of ZFC. Suppose κ is an
inaccessible cardinal. We say that (Q,Λ) is a hod pair at κ if

1. (Q,Λ) is a hod pair,

2. Q ∈ HC31

3. Λ is a (κ, κ)-iteration strategy,

4. Code(Λ) is a κ-universally Baire set of reals.

⊣

Suppose (Q,Λ) is a hod pair at κ. Then we let

LpΛ,κ(a) =
⋃
{M :M is a sound Λ-mouse over a such that ρω(M) = ord(a) andM ⊴ (Le((Q,Λ), a)Vκ }.

As is customary, we let LpΛ,κα (a) be the αth iterate of LpΛ,κ(a). Below S∗(R) is the ∗-transform of S into
a hybrid mouse over R, it is defined when R is a cutpoint of S (cf. [8]).

Definition 6.2 (Fullness preservation in models of ZFC) Suppose now that (P,Σ) is a hod pair at κ.
We then say Σ is κ-fullness preserving if the following holds for all (T ,Q) ∈ I(P,Σ) ∩ Vκ.

31We will later apply this definition to Q which are not countable. The reason we make this assumption is so that we can
have clause 4 below. It follows that the current definition makes sense in a variety of situations, and in particular when clause
4 holds after collapsing Q to be countable.



1. For all meek layers R of Q such that R is of successor type32, letting S = R−33, for all η ∈
(ord(S), ord(R)) if η is a cutpoint cardinal of R then

(R|(η+)R)∗ = LpΣS,T ,κ(R|δ).

2. For all meek layers R of Q such that R is of limit type,

R = LpΣR|δR ,T ,κ(R|δR).

3. If P is of #-lsa type then LpΣ
stc
Q,T

,κ(Q) ⊨ “δQ is a Woodin cardinal"34.

We continuing our work inside some model of ZFC.

Definition 6.3 (Universal tail) Suppose (Q,Λ) is a hod pair at κ such that Λ has branch condensation
and is κ-fullness preserving. Suppose λ < κ is an inaccessible cardinal. Then we say (Q∗,Λ∗) is a
λ-universal tail of (Q,Λ) if there is a (possibly generalized) stack

T = (Mβ,Tβ, Eβ : β < λ)

on Q according to Λ with last model Q∗ such that lh(T ) = λ and for any (S,R) ∈ I(Q,Λ) ∩ Vλ there is
a stackU on R according to ΛR,S such that for some α <,Mα is the last model ofU.

If T is as above then we say T is a λ-universal stack on Q according to Λ.

Now observe that because of our assumption on (P,Σ), whenever Q,R ∈ pI(P,Σ), (Q,ΣQ) and
(R,ΣR) have a common tail in N∗z |δz. In fact more is true. Suppose κ is a strong cardinal of N∗z . Then it
follows that if Q,R ∈ pI(P,Σ)∩N∗z |κ then (Q,ΣQ) and (R,ΣR) have a common tail inN∗z |κ. This means
that whenever κ < δz is a cardinal of N∗z and Q ∈ (pI(P,Σ) ∪ pB(P,Σ)) ∩ N∗z |κ, we can form the direct
limit of all ΣQ iterates of Q that are in N∗z |κ. Let RQ,ΣQκ be this direct limit.

Lemma 6.4 (Uniqueness of universal tails) Suppose Q ∈ pI(P,Σ) ∩ N∗z |δz. Then for each S ◁c
hod Q

and N-strong κ < δz such that S ∈ N∗z |κ, there is a unique κ-universal tail of (S,ΣS). In fact, letting
R = R

S,ΣS
κ , (R,ΣR) is the unique κ-universal tail of (S,ΣS)

Definition 6.5 Suppose Q ∈ (pI(P,Σ) ∪ pB(P,Σ)) ∩ N∗z |δz and κ is an N-strong cardinal such that
Q ∈ N∗z |κ. Then we say N captures a tail of (Q,ΣQ) below κ if there is a hod pair (R,Λ) ∈ N such
that Λ is a (κ, κ)-iteration strategy and there is a term relation τ ∈ NColl(ω,<κ) such that whenever
g ⊆ Coll(ω, |R|+) is N-generic,

1. N[g] ⊨ “(R, τg) is a hod pair at κ such that τg is κ-fullness preserving" and τg ↾ N = Λ,

2. for some λ < κ, R = RQ,Λλ and letting T,U ∈ N[g] witness that τg is κ-uB, whenever h ⊆ Coll(ω, <
κ) is N[g]-generic, (p[T ])N[g][h] = Code(ΣR) ∩ N[g][h].

We say N captures B(Q,ΣQ) below κ if whenever R ∈ pB(Q,ΣQ) ∩ N∗z |κ, N captures (R,ΣR) below κ.

Towards a contradiction, we assume that N does not capture a tail of (P,Σ)

32See Definition ??.
33This is the longest proper layer of R.
34Here, if Σ is a short tree strategy then Σstc = Σ.



Notation 6.6 For each Q ∈ pB(P,Σ), we let λQ be the least N-strong cardinal ν such that N captures
the ν-universal tail of (Q,ΣQ). We let (RQ,Σ,ΦQ,Σ) be the λQ-universal tail of (Q,ΣQ). For each inacces-
sible cardinal ν such that Q ∈ N|ν, we let (RQ,Σν ,ΦQ,Σν ) be the ν-universal tail of (Q,ΣQ). If λ ≥ λQ then
π
ΣQ

Q,RP,Σλ
is the iteration map πΣQ

Q,RQ,Σ
.

Notation 6.7 Suppose now that κ0 is an N-strong cardinal that reflects the set of N-strong cardinals.
Let

E0 = {E ∈ E⃗N : N ⊨ “ν(E) is inaccessible" and for all η ∈ (̨0, ν(E)), N ⊨ “η is a strong cardinal" if and
only if Ult(N , E) ⊨ “η is a strong cardinal"}.

⊣

Notation 6.8 Working in N , let

F = {(Q,Λ) : Q ∈ N|.z ∧ J[N] ⊨ “(Q,Λ) is a hod pair at δz and Λ has branch condensation and is
δz-fullness preserving”}.

We have that F is a directed system. Let for λ ≤ δz,

F ↾ λ = {(Q,Λ) ∈ F : Q ∈ N|λ}.

We let R∗ be the direct limit of F ↾ κ0 under the iteration maps. ⊣

Definition 6.9 Let R0 = (RP,Σκ0 )b. ⊣

The next lemma summarizes what was proved in [4].

Lemma 6.10 The following holds.

1. Suppose Q ∈ pB(P,Σ) ∩ N∗z |κ0. Then RQ,ΣQ ∈ N|κ0.

2. Suppose Q ∈ pB(P,Σ), λ > κ0 is a strong cardinal of N such that Q ∈ N|λ, and E ∈ E0 is an
extender with critical point κ0 such that ν(E) > (λ+)N

∗
z . Then ΦQ,Σ ↾ Ult(N , E) ∈ Ult(N , E).

3. Let R∗ be as in Notation 6.8. Then either R0 ⊴hod R
∗ or R0|δ

R0 = R∗. Moreover, R0 ∈ N and
ΣR0 ↾ N ∈ J[N].

The idea of the proof of Lemma 6.10 is explained in the next section.

6.2 The meek case

In the case λP is a successor ordinal. We assume Σ is strongly guided by B⃗ = {Bi : i < ω} and some tail
(R,Φ) of (P−,ΣP−) is captured byN . We can then capture an iterate of P by using the universality of the
L[E,Φ]N -construction. In particular, let κ be the least < δ-strong ofN above R, and (M,Ψ) = (RPκ ,Ψ

P
κ ).

One can showM ∈ N by showingM|δM is VHOD
Θ

as computed in the derived model of N1 at κ, where
N1 = L[N∗1 ] and N∗1 is the last model of the L[E,Φ]N -construction. To see Ψ ↾ N ∈ N , N can define
the following strategy Λ and verify that Λ = Ψ ↾ N .

Let Q = RPκ . Given normal tree T ∈ dom(Λ), we let Λ(T ) = b if one of the following holds:

1. T is based on Q− and b = ΨQ,T .35

35Q− = Q(λQ − 1) if λQ is a successor ordinal.



2. T has is not entirely based on Q− and if (S,U) are such that T up to S is based on Q− andU is
on S above S−, then one of the following holds:

(a) U has a fatal drop at (α, γ) and letting W be the part of U after stage α, W⌢{MUb } is

according to the strategy of OM
U
α

γ .

(b) U doesn’t have a fatal drop, Q(U, b) exists and Q(U, b) is an initial segment of L[E,ΨS−]N .

(c) None of the above holds. There is an extender E ∈ E⃗N with crit(E) = κ and such that
T ∈ N|ν(E) and there is σ :MTb → πE(Q) with the property that πE ↾ Q = σ ◦ π

T
b .

Suppose λP is a limit ordinal and without loss of generality, we assume co fP(λP) is measurable in
P. Recall we assume the theorem holds for every Q ∈ pB(P,Σ). The following facts take place in N
and are easy to prove. The key point in all of these proofs is that letting E∗ be the resurrection extender
of E, then πE∗(Σ ↾ N∗z ) = Σ ↾ Ult(N∗z , E

∗).

Lemma 6.11 Suppose ν is an inaccessible cardinal and λ > ν is strong in N . Suppose (Q,ΣQ) ∈
B(P,Σ) ∩ N∗z |ν, R

Q
ν ∈ N , and ΨQν ↾ N|λ ∈ N . Then ΨQν ↾ N|δ ∈ N .

Lemma 6.12 Suppose (Q,ΣQ) ∈ B(P,Σ) ∩ N∗z |κ0. Then λQ < κ0 and therefore RQ ∈ N|κ.

Lemma 6.13 Suppose (Q,ΣQ) ∈ B(P,Σ) ∩ N∗z and λ > κ is a strong cardinal such that λQ < λ. Let
E ∈ E be such that crt(E) = κ and ν(E) > (λ+)N

∗
z . Then ΨQ ↾ Ult(N , E)|δ ∈ Ult(N , E).

The above lemmas easily imply parts 1 and 2 of Lemma 6.10. To see part 3, first note thatR0 = (RP,Σκ0 .
The first clause of 3 is clear from our hypothesis. To see R0 ∈ N , let Λ = ⊕α<λR0ΣR0(α). We claim that
Λ ↾ N|δ ∈ N . This implies R0 ∈ N because R0 = LpΛω(R0|δ

R0) and LpΛω(R0|δ
R0) ∈ N by universality.

To see that Λ ∈ N , note that the sequence (ΣR0(α) ↾ N|δ : α < λR0} ∈ N because for each such α,
we can let (Q,Φ) ∈ F0 such that (R0(α),ΣR0(α)) is an iterate of (Q,Φ). N can define a κ0-universal stack
S⃗ ∈ N that witnesses this. Then ΣR0(α) = ΦS⃗,R0(α) and doesn’t depend on the choice of (Q,Φ).

We have outlined the argument that ⊕α<λR0ΣR0(α) ↾ N|δ ∈ N . Now we need to argue ΣR ↾ N|δ ∈ N .
We will define a πE-realizable strategy Λ of R in N and show that Λ = ΣR ↾ N|δ.

We briefly review definitions and notations related to the analysis of stacks in [4, Section 6.2]; see
[4, Section 6.2] for a more detailed discussion. Suppose P is a hod premouse and T⃗ is a stack on P. Let
S be a model that appears in T⃗ . By T⃗≤S we mean the part of T⃗ up to and including S (according to the
tree order of T⃗ ), we define T⃗≥S, T⃗<S, T⃗>S similarly. We let (Mα,Tα : α < η) be the normal components
of T⃗ , i.e. M0 = P, Tα is a normal tree onMα, andMα+1 = M

Tα . We say R is a terminal node of T⃗
if for some α, β, R = MTαβ and πTα0,β is defined. We say R is a non-trivial terminal node of T⃗ if letting

(α, β) witness that R is a terminal node of T⃗ , the extender ETαβ is applied to R in the tree Tα to obtain

the modelMTα
β+1. We write tn(T⃗ ) for the set of terminal nodes of T⃗ and ntn(T⃗ ) for the set of non-trivial

terminal nodes of T⃗ .
For Q,R ∈ tn(T⃗ ), we write Q ≺T⃗ R if the Q-to-R iteration embedding in T⃗ exists, and we write

πT⃗
Q,R

for this embedding. We write Q ≺T⃗ ,s R if letting U⃗ be the part of T⃗ between Q and R, then U⃗ is

an iteration on Q. We write T⃗Q,R for U⃗.
Let C ⊆ tn(T⃗ ). We say C is linear (strongly linear respectively) if C is linearly ordered by ≺T⃗ (≺T⃗ ,s

respectively). We say C is closed if C is strongly linear and whenever α is a limit point of C, then letting
R be the direct limit of C ↾ α (under the iteration embeddings), we have R ∈ C. We say C is cofinal if
for every S ∈ T⃗ , there are Q,R ∈ C such that Q ≺T⃗ ,s R and S is in T⃗Q,R. Note that if T⃗ doesn’t have
a last model, but there is a strongly closed and cofinal C ⊆ tn(T⃗ ), then C uniquely determines a cofinal



branch of T⃗ . If such a C doesn’t exist, then η is a successor ordinal, say η = α + 1. Let U = T⃗α and
D = {S ∈ tn(U) : U≥S is a tree on S}. In this case D has a ≺T⃗ ,s-largest element and we write S

T⃗
for

this element. Then T⃗S
T⃗

is a normal tree based on S
T⃗

(β + 1) and above δ
S
T⃗

β for some β < λST⃗ . We write

ξT⃗ ,ST⃗ for δ
S
T⃗

β and similar notations are applied to any Q ∈ ntn(T⃗ ).

Definition 6.14 (πE-realizable iterations) Let T⃗ be a stack on R. We say T⃗ is πE-realizable for E ∈ E0

if there is a strong cardinal λ < ν(E) such that T⃗ ∈ N|λ and sequences ⟨σQ : Q ∈ tn(T⃗ )⟩, ((SQ,ΛQ) ∈
F0 ↾ λ : Q ∈ tn(T⃗ )) such that

1. σR = πE ↾ R; for all Q ∈ tn(T⃗ ), σQ : Q → πE(R).

2. For Q,S ∈ tn(T⃗ ) such that Q ≺T⃗ ,s S, σQ = σS ◦ πT⃗Q,S.

3. For every Q ∈ ntn(T⃗ ), σQ[Q(ξT⃗ ,Q + 1)] ⊂ rng(πΛQ
SQ,∞

). We let S∗
Q
= σQ(ψT⃗ ,Q + 1).

4. For every Q ∈ ntn(T⃗ ), letting (SQ,ΛQ) be as above, and letting kQ : Q(ξT⃗ ,Q + 1) → SQ be
given by: kQ(x) = y if and only if σQ(x) = πΛQ

SQ,∞
(y) and kQT⃗Q is according to ΛQ. Furthermore,

(Q(ξT⃗ ,Q + 1),ΛkQ
Q

) ∈ πE(F0) and σQ ↾ Q(ξT⃗ ,Q + 1) is the embedding given by ΛkQ
Q

.

5. Q,S ∈ ntn(T⃗ ) such that Q ≺T⃗ ,s S,

(ΛkS
S

)
S(πT⃗

Q,S
(ξT⃗ ,Q+1)

= (ΛkQ
Q

)
S(πT⃗

Q,S
(ξT⃗ ,Q+1)

.

6. For every trivial terminal node Q, for every ξ < λQ, there is a hod pair (SQ,ΛQ) ∈ F0 ↾ λ such
that σQ(ξ + 1) ⊂ rng(πΛQ

SQ,∞
).

Definition 6.15 Let T⃗ ∈ N|δ be a stack of on R.36 We let T⃗ ∈ dom(Λ) iff for some ξ < δ, whenever
E ∈ E0 such that ν(E) > ξ, T⃗ is πE-realizable . Define Λ(T⃗ ) = b iff for some ξ < δ, whenever E ∈ E0

such that ν(E) > ξ, T⃗ ⌢b is πE-realizable.

The following are the key ideas in showing Λ = ΣR ↾ N|δ.

Claim 6.16 Let T⃗ ∈ dom(Λ). There is ξ < δ such that for all E ∈ E0 with ν(E) > ξ37, letting E∗ ∈ EN
∗
z

be E’s resurrection, and i : Ult(N , E) → πE∗(N) be the factor map, for every Q ∈ ntn(T⃗ ), i ◦ σQ is the
iteration embedding according to ΣQ.

Proof. We sketch the proof here. πE∗ = i ◦ σR is the iteration embedding according to ΣR. Suppose
Q ∈ ntn(T⃗ ) and there is a largest Q∗ ≺T⃗ ,s Q (the case there is no largest Q∗ ≺T⃗ ,s Q is easy). Note that
T⃗Q∗,Q is based on Q∗(T⃗ ,Q

∗

+1) and is according to ΣQ∗ . Write ζ for T⃗ ,Q
∗

. Since

σQ(x) = σQ∗( f )(σQ(a))

for x = πT⃗
Q∗,Q

( f )(a) and f ∈ Q∗ and a ∈ Q(ζ + 1).
It is enough to show σQ ↾ Q(ζ + 1) is according to ΣQ. For this, it suffices (by the inductive

hypothesis, using item 5) to see that

(ΛkQ∗
Q∗

)Q∗(ζ+1) = ΣQ∗(ζ+1) ↾ N|δ. (1)

The following are the main things to note:

36T⃗ either has a strongly linear, closed and cofinal set C ⊆ tn(T⃗ ) or T⃗S
T⃗

is of limit length.
37We can take ξ to be above the sup of λQ(ξ) for every ξ < λQ and every Q ∈ ntn(T⃗ ).



(i) Ult(N , E) ⊨ (ΛkQ∗
Q∗

)Q∗(ζ+1) = (ΛQ∗)
σQ∗

S∗
Q∗

(σQ∗ (ζ+1)) ↾ N|ν where ν < ν(E) is a strong cardinal such that

Q∗ ∈ N|ν.

(ii) i((ΛQ∗)S∗
Q∗

(σQ∗ (ζ+1))) = ΣS∗
Q∗

(σQ∗ (ζ+1)) ↾ N|δ.

(ii) follows from the choice of E that allows us to find a common iterate of (S∗
Q∗
,ΛQ∗) and (RQ

∗

,ΨQ
∗

↾

Ult(N , E)) in N|λ. Since i ◦ σQ∗ is the iteration embedding according to ΣQ∗ , i((ΛQ∗)S∗
Q∗

(σQ∗ (ζ+1))) =
ΣQ∗(ζ+1) ↾ πE∗(N), and i ↾ λ = id, (1) easily follows. □

Claim 6.17 Suppose T⃗ is πE-realizable for E as in Claim 6.16. Then T⃗ ∈ dom(ΣR).

Proof. We need to show that for any Q ∈ tn(T⃗ ), T⃗R,Q is according to ΣR and if S
T⃗

exists then T⃗S
T⃗

is
according to ΣS

T⃗
.

The first claim is proved as follows. Let E∗ be the resurrection of E and i : Ult(N , E)→ πE∗(N) be
the factor map. Then

πE∗ ↾ R = i ◦ σQ ◦ πT⃗R,Q.

Since πE∗ ↾ R is the iteration embedding according to ΣR, T⃗R,Q is according to ΣR by branch condensa-
tion.

The second claim has been proved by the previous claim. Note that letting K = S
T⃗

, T⃗K is based on

K(ξT⃗ ,K + 1) and is according to ΛkK
K

. But the claim above shows that ΛkK
K
= Σ

K(ξT⃗ ,K+1). This is what
we want. □

Claim 6.18 Suppose T⃗ ∈ dom(Λ), then Λ(T⃗ ) is defined.

Proof. Let ξ witness T⃗ ∈ dom(Λ). First suppose S
T⃗

is undefined. So there is a closed and unbounded
C ⊆ ntn(T⃗ ). Let b = bC be the cofinal branch given by C. Let ξ∗ be the sup of ΛK(ξ) for K ∈ ntn(T⃗ ⌢b

and ξ < λK . If λ > max(ξ, ξ∗), then λ witnesses T⃗ ⌢{MT⃗b ∈ dom(Λ).
Suppose S

T⃗
exists. Let Q = S

T⃗
and T = T⃗Q and b = ΛQ(kQT ). It is easy to see (using arguments

similar to the above claims) that b is independent of E and T⃗ ⌢b is according to ΣR. Suppose πb exists
and let ξ∗ be at least the sup of ΛK(ξ) for K ∈ ntn(T⃗ ⌢b. Let EE0 be such that ν(E) > λ for some strong
cardinal λ > ξ∗. Let S =MTb and ΣS : S → πE(R) be the natural map: σS(x) = σQ( f )(τ(a)) for f ∈ Q,

a ∈ (δ(T ))<ω such that x = πb( f )(a), and τ(a) = π
Λ

kQ
Q

S(πT⃗b (ξT⃗+1),SQ
(a). We want to verify that all clauses

of Definition 6.14 hold. All are easy except possibly clause 6. Let E∗ be E’s resurrection extender and
i : Ult(N , E) → πE∗(N) be the factor map. Letting j = i ◦ σS, then j is according to ΣS. For every
γ < λS,

j[S(γ)] ⊆ πΨ
S(γ)

S(γ),πE∗ (S∗Q)(σS(γ)).

This means (RS(γ),ΨS(γ) : γ < λS) witnesses clause 6.
□



6.3 The non-meek case

Below we will develop a technology for recovering the full iterate of P. Let R+0 = R
P,Σ
κ0 be the iterate of

P extending R0 and let i : P → R+0 be the iteration embedding. We will recover an iterate of R+0 insideN
as an output of a backgrounded construction that is done over R0. Such constructions are called mixed
hod pair constructions. The details of this construction appear in Section ??.

There are two kinds of extenders that we will use in this construction. The extenders with critical
point > δR0 will have traditional background certificates. We will use the total extenders on the sequence
of N to certify such extenders. The extenders with critical point δR0 will come from a different source.
The following key lemma illustrates the idea.

Lemma 6.19 Let δ = δR0 . Suppose S ∈ pI(R+0 ,ΣR+0 ) is a normal iterate of R+0 that is obtained by

iterating entirely above δR0 . Suppose that α ∈ dom(E⃗S) is such that letting E =de f E⃗S(α), crit(E) = δ,
S|α ∈ N and ΣS|α ↾ N ∈ J[N]. Then E ∈ N . Moreover, (a, A) ∈ E if and only if a ∈ ν<ωE , A ∈ [δ]|a| and
whenever F ∈ E0 is such that crit(F) = κ0 and

N ⊨ “there is a strong cardinal λ in the interval (κ0, νF) such that S ∈ N|λ”,

π
ΣS|α

S|α,πF (R0)(a) ∈ πF(A)38.

Proof. Set M+ = Ult(R+0 , E) and M = Ult(R0, E). Let F∗ be the resurrection of F and let σ :
Ult(N , F) → πF∗(N) be the canonical factor map. We have that σ ↾ νF = id. Thus, πF∗ ↾ N = σ ◦ πF .
It follows that πF∗ ↾ R

+ is the iteration embedding implying

(1) πF∗ ↾ R
+
0 = π

ΣM+

M+,πF∗ (R+0 ) ◦ π
R+0
E .

We now have that

(a, A) ∈ E ⇐⇒ a ∈ π
R+0
E (A)

⇐⇒ π
ΣM+

M+,πF∗ (R+0 )(a) ∈ πΣM+
M+,πF∗ (R+0 )(π

R+0
E (A))

⇐⇒ σ(πΣM
M,πF (R0)(a)) ∈ πF∗(A)

⇐⇒ σ(πΣM
M,πF (R0)(a)) ∈ σ(πF(A))

⇐⇒ π
ΣM
M,πF (R0)(a) ∈ πF(A)

Therefore,

(a, A) ∈ E ⇐⇒ π
ΣM
M,πF (R0)(a) ∈ πF(A).

By our assumption, the right hand side of the equivalence can be computed in N . Hence E ∈ N . □

Thus, the extenders with critical point .R0 that we will use in our mixed hod pair construction have
the following property. If Q is the current level of the construction and Λ is its strategy then let E be the
set of pairs (a, A) such that a ∈ (.R0)<ω and for every F ∈ E0 such that crit(F) =˛0 and

N ⊨ “there is a strong cardinal ł in the interval (̨0, νF) such that Q ∈ N|ł”,

38The embedding πΣS|α
S|α,πF (R0) is just πΣS|α

S|α,R
S|α,ΣSα
πF (̨0)

. We will often abuse our notation this way.



πΛ
Q,πF (R0)(a) ∈ πF(A).

There is one problem with this approach. We need to know the strategy Λ of Q before we can find
the relevant extender. To resolve this problem, we will first define the strategy Λ. Essentially Λ will pick
branches that, for some η, are πE-realizable for all E ∈ E0 such that νE > η. We will call such strategies
E0-certified.

Lemma 6.20 Suppose η > ˛0 is such that N ⊨ “η is a strong cardinal that reflects the set of strong

cardinals". Set S+ = RP,Ση , i+ = π
ΣR+0
R+0 ,S

+ , S = (S+)b and i = i+ ↾ R0. Then i ∈ N and N ⊨ |S| < (η+)N .

Remark 6.21 We also get, by methods in [7, Theorem 9.2.2], that πE ↾ S is a strongly condensing set
in Ult(N , E)[g] where g ⊆ Coll(ω, πE(η)) is any Ult(N∗z , E)-generic.

Proof. If suffices show that i ∈ N . Let F ∈ E⃗N be any extender such that crit(F) = κ0 and Ult(N , F) ⊨ “η
is a strong cardinal". Let F∗ be the background certificate of F and let k : Ult(N , F) → πF∗(N) be the

canonical factor map. We now have that πF∗ ↾ R
+
0 = π

ΣR+0
R+,πF∗ (R+0 ). We thus have that

(1) πF∗ ↾ R
+
0 = π

ΣS+

S+,πF∗ (R+0 ) ◦ π
ΣR+0
R+0 ,S

+ .

Let m = πΣS+
S+,πF∗ (R+0 ) ↾ S|δ

S. We have that

(2) m = π
Σ
S|δS

S|δS,πF∗ (R0)|ξ
where ξ = sup(m[δS]).

Because ΣS|δS ↾ N ∈ N , we have that k(ΣS|δS ↾ N) = ΣS|δS ↾ πF∗(N) and therefore, m ∈ πF∗(N)
and m ∈ rge(k). Let n = k−1(m). Thus,

(3) n = π
Σ
S|δS

S|δS,πF (R0)|k−1(ξ)
.

Notice now that for x ∈ R0,

(4) πF∗(x) = πΣS+
S+,πF∗ (R+0 )(i(x))

implying that

(5) S is the transitive collapse of {πF∗( f )(m(a)) : f ∈ R0 ∧ a ∈ (δS)<ω} and π
ΣS+

S+,πF∗ (R+0 ) ↾ S is the
inverse of the transitive collapse.

(5) now implies that

(6) S is the transitive collapse of {πF( f )(n(a)) : f ∈ R0 ∧ a ∈ (δS)<ω}.

Since {πF( f )(n(a)) : f ∈ R0 ∧ a ∈ (δS)<ω} ∈ N , we have that if σ : S → πF(R0) is the inverse of
the transitive collapse then σ ∈ N . Moreover,

(7) πF∗ ↾ R0 = k ◦ σ ◦ i and k ◦ σ = πΣS+
S+,πF∗ (R+0 ) ↾ S.

It now follows that



(8) i(x) = σ−1(πF(x)).

Since both σ and πF are in N , we get that i ∈ N .
□

Suppose now that κ is an N-strong cardinal that reflects the set of N-strong cardinals such that
κ > κ0. Let

E = {E ∈ E⃗N : N ⊨ “ν(E) is inaccessible" and for all η ∈ (κ, ν(E)), N ⊨ “η is a strong cardinal" if and
only if Ult(N , E) ⊨ “η is a strong cardinal"}.

Set R+ = RP,Σκ and let R = (R+)b. It follows from Lemma 6.10 that R ∈ N . Let Φ+ = (ΦP,Σκ )R|δR and
Φ = Φ+

R
39

Notice that Φ ↾ N ∈ L[N].

Definition 6.22 Working in N , we say (σ,Q) is E-realizable if

• σ : R → Q is an elementary embedding,

• for some N-strong cardinal ξ ∈ (̨,.z), Q ∈ N|ξ and for all E ∈ E such that ξ < ν(E) and for all N-
generic g ⊆ Coll(ω,Q), there is j : Q → πE(R) such that j ∈ Ult(N , E)[g] and πE ↾ R = σ ◦ j.40

We say that j is (πE , σ)-realizable. Continuing our work in N , let F ′
E

be the set of πE-realizable pairs
(σ,Q). Given (σ,Q) ∈ F ′

E
, let ξ(σ,Q) < .z witness that clause 2 above holds for (σ,Q). Given E ∈ E

such that ξ(σ,Q) < ν(E), letting j : Q → πE(R) be any (πE , σ)-realizable embedding, set Ψσ,Q,E, j = ( j-
pullback of πE(Φ))41. ⊣

The following is an easy consequence of the remark after Lemma 6.20 and

Definition 6.23 Working in N , we say (σ,Q) is neatly E-realizable if (σ,Q) is E-realizable and for all
E0, E1 ∈ E with ν(E0) ≤ ν(E1),

Ψσ,Q,E0 ↾ N|ν(E0) = Ψσ,Q,E1 ↾ N|ν(E0).

Let FE be the set of neatly E-realizable pairs, and for (σ,Q) ∈ FE, let

Ψσ,Q = ∪{Ψσ,Q,E : E ∈ E ∧ ξ(σ,Q) < ν(E)}42.

⊣

The following is a key lemma.

Lemma 6.24 Suppose S is a Φ+-iterate of R+ via T such that πT ,b is defined and Sb ∈ N . Then
πT ,b ∈ N , (πT ,b,Sb) is neatly E-realizable and

ΨπT ,b,Sb = Φ+
Sb ↾ N .

39See Notation 6.6.
40Notice that πE ↾ R ∈ Ult(N , E), see Lemma 6.20.
41Ψσ,Q,E, j is defined in Ult(N , E).
42Ψσ,Q is defined in J[N] and Ψσ,Q ↾ N is total.



Proof. The proof of πT ,b ∈ N is exactly the proof of Lemma 6.20. The proof of the fact that (πT ,b,Sb)
is neatly E-realizable is via a simple absoluteness argument. Let E ∈ E be such that Sb ∈ N|ν(E) and
let E∗ be the background certificate of E. Let k : Ult(N , E)→ πE∗(N) be the canonical factor map. We
have that crit(k) ≥ ν(E). Set σ = πT ,b. Notice that

(1) in πE∗(N), it is forced by Coll(ω,Sb) that there is a (πE∗ , σ)-realizable j : Sb → πE∗(R), and
(2) if g ⊆ Coll(ω,Sb) is πE∗(N)-generic and j : Sb → πE∗(R) is any (πE∗ , σ)-realizable embedding, then
the j-pullback of πE∗(Φ) is Φ+

Sb .

It follows that

(3) in N , it is forced by Coll(ω,Sb) that there is a (πE∗ , σ)-realizable j : Sb → πE∗(R), and
(4) if g ⊆ Coll(ω,Sb) is N-generic and j : Sb → πE∗(R) is any (πE∗ , σ)-realizable embedding, then the
j-pullback of πE(Φ) is independent of j.

Let Π in Ult(N , E) be the strategy of Sb such that it is forced by Coll(ω,Sb), that for some (πE , σ)-
realizable j,Π is the j-pullback of πE(Φ). Let τ : Sb → πE(R) be defined by setting τ(x) = πE( f )(πΠ

S|.Sb,πE(R)
(a))

where x = σ( f )(a), f ∈ R and a ∈ (.Sb)<ω. It follows from clause 2 of Lemma 6.20 that τ is
a (πE , σ)-realization and τ ∈ Ult(N , E). It then follows from (2) that k(Π) = Φ+

Sb and therefore,
Π = Φ+

Sb ↾ Ult(N , E). □

Definition 6.25 Suppose (σ,Q) ∈ FE and E ∈ E is such that ξ(σ,Q) < ν(E). We say that τ = τE
σ,Q

is the canonical E-realization of (σ,Q) if τ : Q → πE(R) and τ(x) = πE( f )(πΨσ,Q,E
Q|.Q,R(σ,Q)(a)) where

R(σ,Q) ⊴hod R is the Ψσ,Q,E-iterate of Q|.Q, f ∈ R, a ∈ (.Q)<ω and x = σ( f )(a). ⊣

The following definitions use various terms from [7] that if introduced here, would make this note
impossibly long. Please look them up in [7].

Definition 6.26 (πE-realizable iterations) Suppose

1. V ∈ N is a hod premouse extending R such that R = Vb,

2. T ∈ N is either a stack onV or an st-stack onV43,

3. E ∈ E.

Suppose that

T = ((Mα)α<η, (Eα)α<η−1,D,R, (βα,mα)α∈R,T )

is a stack. Set Rb = {α ∈ R : πT ,b0,α is defined}. We say T is πE-realizable if the following holds:

1. N ⊨ “λ is a strong cardinal".

2. T ∈ N|lh(E).

3. For all α ∈ Rb, (πT≤α,b,Mb
α) ∈ FE44.

43If T is an st-stack thenV must be of #-lsa type.
44See Definition 6.23.



4. For all α < β such that α, β ∈ Rb, setting τα = τE
σ,Q

, τα = τβ ◦ π
T ,b
α,

.Forallα ∈ Rb, letting Ψα = Ψσα,Mb
α
,

5. (a) if α , max(Rb) and ncTα is based onMb
α|.M

b
α then ncTα is according to Ψα,

(b) if α = max(Rb) andU =↓ (T≥α,Mb
α)45 then

i. if U is based onMb
α and is above .Mb

α then it is according to the unique strategy Π of
Mb

α witnessing thatMb
α is a Ψα-mouse overMb

α|.M
b
α, and

ii. ifU is based onMb
α|.M

b
α thenU is according to Ψα.

We say that (σα : α ∈ Rb) are the πE-realizable embeddings of T and (Ψα : α ∈ Rb) are the πE-
realizable strategies of T . We say T is E-realizable if for some η, T is πE-realizable for every E ∈ E
with the property that lh(E) > η.

The definition of the above concepts for st-stacks is very similar. The embeddings σα are once again
defined for α ∈ Rb which once again consists of those α < lh(T ) with the property that πT ,b0,α is defined.
We leave the details to the reader. ⊣

Recall the E-realizable backgrounded constructions in [7, Definitionn 10.2.28]. We will use them
to find the Q-structures of various iterations and help us define the E-certified iterations.

Definition 6.27 SupposeV ∈ N is a hod premouse extending R such that R = Vb. Suppose T ∈ N is
a stack or an st-stack onV and E ∈ E. We say T is E-certified if the following conditions are satisfied.

1. T is πE-realizable.

2. Suppose τ ∈ (Rb)T is such that letting U =de f ncTτ , U is aboveMb
τ. Let α < lh(U) be a limit

ordinal and let c = [0, α)U . Then the following conditions hold.

(a) If m+(U ↾ α) ⊨ “(.U ↾ α) is not a Woodin cardinal"46 then Q(c,U ↾ α) exists and Q(c,U ↾
α)m+(U ↾ α).

(b) If m+(U ↾ α) ⊨ “(.U ↾ α) is a Woodin cardinal" and there isW such that

i. W appears on the LeE,c(m+(U| ↾ α)) construction of N and

ii. W ⊨ “(.U ↾ α) is a Woodin cardinal" butJω[W] ⊨ “(.U ↾ α) is not a Woodin cardinal",

then Q(c,U ↾ α) exists and Q(c,U ↾ α) =W.

(c) The above two clauses fail. Then T is an st-stack, α + 1 = lh(U) and τ + α ∈ RT ∩maxT .

We say that T is E-certified if for some λ, T is E-certified for every E ∈ E such that lh(E) > λ. ⊣

And finally we define E-certified strategies.

Definition 6.28 Suppose V ∈ N is a hod premouse extending R such that R = Vb. We let ΛV be the
partial strategy ofV with the property that

1. dom(ΛV) consists of E-certified stacks T of limit length, and

2. for all T ∈ dom(ΛV), ΛV(T ) = b if b is the unique x such that T⌢{x} is E-certified.

We say ΛV is the E-certified strategy ofV. ⊣

45This is just the restriction of T≥α toMb
α.

46See Definition 3.1.



Suppose now that

T = ((Mα)α<η, (Eα)α<η−1,D,R, (βα,mα)α∈R,T )

is πE-realizable as witnessed by (σα : α ∈ Rb) and (Ψα : α ∈ Rb). Using the language of [7, Chapter
9] applied in Ult(N , E) to πE(F ↾ κ), it is not hard to see that for α ∈ (Rb)T , Mb

α = PYα where
Yα = σα[Mb

α] and Ψα = ΣYα . It now follows from the existence of condensing sets that there are unique
E-certified strategies.

Lemma 6.29 SupposeV ∈ N is a hod premouse extending R such that R = Vb. Suppose Λ and Ψ are
two E-certified strategies forV. Then Λ = Ψ.

Next, we need to show the correctness of the realizable strategy. The reader should review the
notions of stacks for a strategy or a sts strategy in [7, Chapter 2].

Lemma 6.30 Suppose S∗ is a Φ+-iterate of R+ via an iteration that is entirely above δR. Suppose
further that S ◁hod S

∗ is such that Sb = R and S ∈ N . Let T ∈ N be a stack on S47. Suppose T is
E-certified. Then T is according to Φ+

S
. Thus, ΛS = Φ+S ∩ N

2.48

Proof. Suppose

T = ((Mα)α<η, (Eα)α<η−1,D,R, (βα,mα)α∈R,T ),

and suppose α ∈ Rb is such that T≤α is according to Φ+
S

. We want to show thatU = ncTα is according to
Φ+
Mα

.
Suppose first that U is based onMb

α
49. Let E ∈ E be such that T is πE-realizable as witnessed by

(σα : α ∈ Rb) and (Ψα : α ∈ Rb). Let E∗ be the background certificate of E and let k : Ult(N , E) →
πE∗(N) be the canonical factor map. Notice that for α ∈ Rb,

(1) k ↾ N|ξ = id where ξ is the least such that T ∈ N|ξ.
(2) In πE∗(N), k(σα) :Mb

α → πE∗(N) and k(Ψα) is the k(σα)-pullback of πE∗(Φ).
(3) k(σα) ↾Mα|δ

Mb
α is the iteration embedding according to k(Ψα).

Let F be the un-dropping extender of T≤α and set K+ = Ult(R+, F) and j = π
Φ+
K+

K+,πE∗ (R+) ↾Mα|δ
Mb

α .
Notice now that

(4) Φ
Mα |δ

Mb
α

is the j-pullback of πE∗(Φ) and j is the iteration embedding according to Φ
Mα |δ

Mb
α
.

As the pairs (k(σα), k(Ψα)) and ( j,Φ
Mα |δ

Mb
α
) have the same property, it follows from Lemma ?? that

k(σα) = j and k(Ψα) = Φ
Mα |δ

Mb
α
↾ πE∗(N). Since k(U) = U, in the case U is based onMα|δ

Mb
α , we

have thatU is according to k(Ψα) and therefore,U is according to ΦMα |.Mb
α
, and in the caseU is above

δM
b
α , we have that U is according to the unique strategy of Mb

α that witnesses the fact that Mb
α is a

Φ
Mα |δ

Mb
α
-mouse overMα|δ

Mb
α .

47We assume that T is a stack, but the proof works for generalized stacks as well.
48This equation does not imply that ΛS = Φ+S ↾ N , simply because it does not imply that if x ∈ dom(Φ+

S
) ∩ N then

Φ+
S

(x) ∈ N . To get the aforementioned equality, we need to show that ΛS is total.
49There is yet another case: namely, α = max Rb andU = T≥α. But this case is very similar to our two cases.



Suppose now thatU is above ord(Mb
α). Here, we need to see that

(a) if β < lh(U) is a limit ordinal then letting b = [0, β)U , either Q(b,U) ◁ m+(U) or else Q(b,U) ◁
LpΓ,(Φ

+)sts
m+(U)(m+(U)).

The following lemma establishes (a). For convenience, we will ignore the objects introduced above
and treat next lemma in a general context. Thus T in the next lemma is not the T fixed above.

Lemma 6.31 Suppose T is an E-certified iteration of S, α ∈ Rb and U = ncTα is above ord(Mb
α).

Suppose further that β < lh(U) is a limit ordinal and U<β is according to Φ+
Mα

. Let Q = MUβ and

η > δQ
b

be such that Jω[(Q|η)#] ⊨ “η is a Woodin cardinal" and letW ◁Q be an sts mouse over (Q|η)#.
ThenW is a (Φ+)stc

(Q|η)#-sts mouse.

Proof. Towards a contradiction assume thatW is not a (Φ+)stc
(Q|η)#-sts mouse. It follows that b = [0, β)U

is not the branch chosen by Φ+
S

. For convenience, we change our notation and let U be U ↾ β and
Q = m+(U). It follows from Definition 6.27 that

(1) W is a model appearing in the fully backgrounded E-realizable construction over (Q|η)# done in
N .

What we need to see is that W is a (Φ+)stc
Q

-sts mouse over Q. To show this it is enough to show
that every stack indexed inW is according to (Φ+)stc

Q
. To show this later fact, it is enough to show that

(b) if t = (Q,U0,Q1,U1) is an indexable stack50 on Q appearing in the fully backgrounded E-realizable
construction over Q (done in N) and c is the branch of t indexed in this construction then t⌢{c} is ac-
cording to (Φ+)stc

Q
.

(b) is indeed enough. To see this, notice that if s = (Q,U′0,Q
′
1,U

′
1) is indexed in W and c′ is the

branch of s indexed inW then for some stack t = (Q,U0,Q1,U) as in (b) if e is the branch of t then
s⌢{c} is a hull of t⌢{e}. If t is according to (Φ+)stc

Q
then it follows from hull condensation of (Φ+)stc

Q
that

s is also according to (Φ+)stc
Q

. We now work towards showing that t is according to (Φ+)stc
Q

.
Suppose first thatU0 is according to (Φ+)stc

Q
. We then have thatU1 is a stack based on Qb

1. Because
(T≤α)⌢t is E-certified, we can fix an extender E ∈ E such that (T≤α)⌢t is πE-realizable. We then have
σ : Qb

1 → πE(R) such that πE ↾ R = σ ◦ π
U0,b ◦ πT≤Q,b. We also have that U⌢

1 {c} is according to the
σ-pullback of πE(ΦR). Therefore, t is according to (Φ+)stc

Q
.

It remains to show thatU0 is according to (Φ+)stc
Q

. Without loss of generality, we assume that

• lh(U0) = γ + 1,

• γ is a limit ordinal,

• U0 ↾ γ is according to (Φ+)stc
Q

,

• [0, γ)U0 , (Φ+)stc
Q

(U0),

• there is ζ ∈ RU0↾γ such that (U0)≥ζ = ncU0
ζ and πU0,b exists,

• Jω[m+(U0)] ⊨ “(.U0) is a Woodin cardinal".

50See [7, Chapter3].



The last two clauses can be shown by examining the proof given forU1. Set c0 = [0, γ)U0 , Q0 =de f Q,
Q2 = m+(U0),W0 =de f W andW2 = Q(c0,U0) . We then have that

(2)W2 appears in the fully backgrounded E-realizable construction over Q2 (done in N).

Clearly (2) leads to an infinite descend. □

□

The following two lemmas show that when we do a sts hod pair constructions (in the sense of [7]),
we don’t terminate the construction because a branch indexed in the model fails to be according to ΛV.
We prove the second lemma, whose proof relies on the fact that the E-certified strategy of V, is total.
The proof of Lemma 6.32 is fairly similar to Lemma 6.34.

Lemma 6.32 V ∈ N is a hod premouse extending R such that R = Vb. Then ΛV is total, and hence,
Φ+
V
↾ N = ΛV.

Lemma 6.33 Suppose

1. V ∈ N is a hod premouse extending R such that R = Vb,

2. T ∈ N is either a stack onV or an st-stack onV51,

3. πT ,b is defined, T has a last model and E-realizable.

Let S be the last model of T and suppose Q is authenticated52 by T and is meek and of limit type53.
Then W,U, σ be as in [7, Definition 3.7.3] and letting k : R → Q be given by k(x) = y if and only
σ−1(πT ,b(x)) = πU(y), (k,Q) is E-realizable.

Lemma 6.34 Suppose

1. V ∈ N is a hod premouse extending R such that R = Vb,

2. T ∈ N is either a stack onV or an st-stack onV54,

3. πT ,b is defined, T has a last model and E-realizable.

Let S′ be the last model of T and suppose η < ord(S′) is such that Jω[(S′|η)#] ⊨ “η is a Woodin
cardinal". Suppose S =de f (S′|η)# is such that ShodS

′ andU ∈ N is an nuvs stack according to (ΛV)S
such that πU,b is defined. Let Q = m+(U) and suppose t ∈ N be an indexable stack on Q which is
(S, (ΛV)S)-authenticated55. Then T⌢U⌢t is according to ΛV.

Proof. Suppose t = (Q0,X0,Q1,X1). Assume first that X0 is according to (ΛV)Q. Set p = T⌢U⌢X0

and let σ = πp,b. It follows from Lemma 6.30 that p is according to ΛV, and the previous lemma implies
that (σ,Qb

1) ∈ FE. Because (Qb
1,X1) is a (S, (ΛV)S)-authenticated iteration, it follows from Lemma 6.30

that X1 is according to Ψσ,Qb
1
, and therefore, T⌢U⌢t is according to ΛV.

51If T is an st-stack thenM must be of lsa type.
52See [7, Definition 3.7.3].
53Thus, clause 3 of [7, Definition 3.7.3] holds.
54If T is an st-stack thenV must be of #-lsa type.
55Notice that we, at this point, do not know that ΛV is a total strategy in J[N].



Thus, it is enough to show that X0 is according to (ΛV)Q. The argument given above implies that it
is enough to show that for every α ∈ RX0 such that πX0,b

0,α is defined and ncX0
α is a stack onMX0

α above

ord((MX0
α )b) then ncX0

α is according to (ΛV)
M
X0
α

.

Assume then α is as above and (X0)≤α is according to (ΛV)Q. SetM = MX0
α , X = (X0)≤α and let

Y = ncX0
α . We want to see thatY is according to (ΛV)M. Let β < lh(Y) be a limit ordinal such thatY<β

is according to (ΛV)M. We want to see that if b = [0, β)Y then b = (ΛV)M(Y<β). The dificult case is
when Q(b,Y<β) exists and is an sts mouse over m+(Y<β). In this case, we want to see that Q(b,Y<β) is
a model appearing in the fully backgrounded E-realizable construction over m+(U0) (done in N). This
would follows from the proof of the previous lemma. Our strategy for showing this is by showing (a)
and (b) where these are the following statements:

(a) Q(b,Y<β) is a (Φ+m+(Y<β))
stc-mouse over m+(Y<β).

(b) IfW is a (Φ+m+(Y<β))
stc-mouse over m+(Y<β) thenW appears in the fully backgrounded E-realizable

construction over m+(U0) (done in N). More precisely, letting

LeE,c(m+(Y<β)) = (Zγ,Kγ, F+γ , Fγ, bγ : γ ≤ δz)

be the fully backgrounded E-realizable construction over m+(Y<β) done in N then for some γ < δz,
Zγ =W.

(a) is a consequence of strong branch condensation of Φ+. (b) is a consequence of the fact that ΛV
is total, and hence Φ+

V
↾ J[N] = ΛV (see Lemma 6.30). Assuming that ΛV is total, (b) can be proven

by simply comparingW with the LeE,c(m+(Y<β)) construction. The stationarity of LeE,c(m+(Y<β)) im-
plies that the construction side doesn’t move, and the fact that ΛV is total implies that the construction
doesn’t break down because in clause 3b of [7, Definitionn 10.2.28] we are unable to find the desired
branch. The Important Anomaly stated in clause 3b of [7, Definitionn 10.2.28] does not occur (at least
doesn’t occur before reaching W) because these type of branches are chosen internally and both the
construction side and theW-side must be choosing the same branch. But on theW-side, the branch is
according to Φ+

V
and therefore, according to ΛV. In the next subsection, we will prove that ΛV is total,

and more details will be given. □

We devote this entire subsection to the definition of a construction producing the iterate of R+. In
this construction, we use E-certification method to acquire extenders with critical point δR, and we use
the total extenders on the sequence of N to generate extenders with critical points > .R. First we define
E-certified extenders. The reader may wish to review Definition 6.25.

Definition 6.35 Suppose Q ∈ N is a hod premouse such that ΛQ (see Definition 6.28) is total and
Qb = R. Suppose F is an extender such that (Q, F̃) is a reliable lses where F̃ is the amenable code of
F. We say F is E-certified if

• (πF ↾ R, πF(R)) ∈ FE and

• for some N-strong cardinal λ, for any E ∈ E such that lh(E) > λ, setting τ = τπF↾R,πF (R)
56,

(a, A) ∈ F ⇐⇒ τ(a) ∈ πE(A).
56See Definition 6.25.



We say that τ is the E-realizability map of F. ⊣

The next lemma shows that E-certified extenders are on the sequence of R+ and its iterates.

Lemma 6.36 Suppose S∗ ∈ pI(R+,Φ+) and S ◁hod S
∗ is such that S ∈ N and Sb = R. Suppose F

is such that (S, F̃) is a reliable lses 57 where F̃ is the amenable code of F and F is E-certified. Then
F ∈ E⃗S

∗

.

Proof. Let γ = ord(S) and suppose F∗ ∈ E⃗S
∗

(γ). Then F∗ has exactly the same property as F and there-
fore, F = F∗. Thus, it is enough to show that γ ∈ dom(E⃗S

∗

). Suppose first that there is γ′ ∈ dom(E⃗S
∗

)
such that S ⊴hod S

∗|γ′ and if G′ = E⃗S
∗

(γ′) then crit(G′) = δR. Let γ∗ be the least such γ′ and set
G = E⃗S

∗

(γ∗). As F and G both have the property described in Definition 6.35, F is an initial segment of
G, and therefore, γ = γ∗ and γ ∈ dom(E⃗S

∗

). Suppose then that

(1) there is no γ′ ∈ dom(E⃗S
∗

) such that crit(E⃗S
∗

(γ′)) = δR.

Because F is E-certified, we have that for some N-strong cardinal ł, whenever E ∈ E is such that
lh(E) > λ, some proper initial segment of πE(R) is a Φ+

S
-iterate of S. Therefore, (S,Φ+

S
) is in HPΓ, and

hence, (S∗,Φ+
S∗

) ∈ HPΓ. This is because (1) implies that S∗ ◁ LpΓ,Φ
+
S(S) or S∗ ◁ LpΓ,(Φ

+
S

)stc
(S). □

Next we introduce the mixed hod pair constructions.

Definition 6.37 We say that

mhpc = (Mγ,Nγ,Yγ,Φγ, F+γ , Fγ, bγ : γ ≤ δ)

is the output of the mixed hod pair construction of N over R if the following conditions hold.

1. M0 = Jω[R], and for all γ ≤ δ, each ofMγ and Nγ is either undefined or is an hp-indexed lses
(see [7, Definition 3.9.2]).

2. For all γ ≤ δ, ifMγ is defined then Yγ = YMγ (see [7, Definition 2.3.13]).

3. For all γ ≤ δ, ifMγ is defined then Φγ = ΦMγ
is the E-certified strategy ofMγ

58.

4. For all γ ≤ δ, if Nγ is defined and either

(a) Nγ is not a reliable hp-indexed lses59 or

(b) Nγ is a reliable hp-indexed lses but for some Q ∈ YNγ such that Q is meek or gentle60 and
for some n < ω, ρn(Nγ) ≤ .Q, or

(c) Φγ is not total,

then all remaining objects with index ≥ γ are undefined.

For all γ ≤ η for which clause 4 (the above statement) fails, πγ : core(Nγ) → Nγ is the un-
collapse map.

57lses is defined in [7, Definition 2.5.4] and an lses is reliable if all of its cores exist and are iterable.
58See Definition 6.28.
59To verify that Nγ is lses, we need to verify that clause 2 of [7, Definition 2.5.4] holds.
60See [7, Definition 2.7.1].



5. Suppose for some ξ < δ, for all γ ≤ ξ, bothMγ,Nγ are defined. ThenMξ+1, Nξ+1, Yξ+1, Φξ+1,
F+ξ , Fξ and bξ are deteremined as follows.

(a) SupposeMξ = (J E⃗, f
ωα , ∈, E⃗, f ,Yξ, ∈) is a passive hp-indexed lses, there is an extender H∗ ∈ E

an extender H overMξ, and an ordinal ν < ωα such that ν < lh(H∗) and setting

H = H∗ ∩ ([ν]ω × ⌊Mξ⌋), and Nξ+1 = (J E⃗, f
ωα , ∈, E⃗, f ,Yξ, H̃, ∈)

where H̃ is the amenable code of H, clause 4.a fails for ξ + 1. Then letting ι ∈ dom(E⃗N ) be
the least such that H∗ =de f E⃗N (ι) ∈ E has the above properties,

Nξ+1 = (J E⃗, f
ωα , ∈, E⃗, f ,Yξ, H̃, ∈)

where H̃ is the amenable code of H61. Assuming clause 4 fails for ξ + 1, the remaining
objects are defined as follows.

i. Mξ+1 = core(Nξ+1)62,

ii. F+ξ = H∗ and Fξ = H,

iii. bξ = ∅ and

iv. Yξ+1 = π
−1
ξ+1(Yξ).

(b) SupposeMξ = (J E⃗, f
ωα , ∈, E⃗, f ,Yξ, ∈) is a passive hp-indexed lses63 and there is an extender

H overMξ such that setting

Nξ+1 = (J E⃗, f
ωα , ∈, E⃗, f ,Yξ, H̃, ∈)

where H̃ is the amenable code of H, clause 4.a fails for ξ + 1 and H is E-certified as defined
in Definition 6.35. Assuming clause 4 fails for ξ + 1, the remaining objects are defined as
follows.

i. Mξ+1 = core(Nξ+1)64,

ii. F+ξ = H∗ and Fξ = H,

iii. bξ = ∅ and

iv. Yξ+1 = π
−1
ξ+1(Yξ).

(c) Suppose Mξ = (J E⃗, f
ωα , ∈, E⃗, f ,Yξ, ∈) is a passive hp-indexed lses, Mξ is strategy-ready65,

α = β + γ and there is t ∈ ⌊Mξ |ωβ⌋ such that setting w = (Jω(t), t, ∈), w is ( f , hp)-minimal
as witnessed by β. In particular, this means that we have to index the branch of t at ωα. and
γ = lh(t). Set b = Φξ(t) and

Nξ+1 = (J E⃗, f +

ω+
¯
ωγ
, ∈, E⃗, f ,Yξ, b̃, ∈)

where b̃ ⊆ ω+
¯
ωγ is defined by ω+

¯
ων ∈ b̃ ⇐⇒ ν ∈ b. Assuming clause 4 fails for ξ + 1, the

remaining objects are defined as follows.

i. Mξ+1 = core(Nξ+1),

ii. Fξ = F+ξ = ∅,

iii. bξ = b̃ and

61Here H is what is determined by H∗. For the definition of the “amenable code" see the last paragraph on page 14 of [11].
62Recall that core(M) is the core ofM.
63I.e., with no last predicate.
64Recall that core(M) is the core ofM.
65See [7, Definition 3.9.1].



iv. Yξ+1 = π
−1
ξ+1(Yξ).

Important Anomaly: Suppose ∪Yξ is #-lsa type and t is nuvs. Suppose e ∈ Mξ |ωβ is such
thatMξ |ωβ ⊨ sts0(t, e)66. If e , b then Nξ+1 is not an sts premouse over Jω(∪Yξ) based on
∪Yξ, and so the construction must stop.

(d) If Mξ doesn’t satisfy clause 2a, 2b or 2c then set Nξ+1 = Jω[Mξ] (this presupposes that
YNξ+1 = Yξ). Assuming clause 4 fails for ξ + 1, the remaining objects are defined as follows.

i. Mξ+1 = core(Nξ+1)67,

ii. Fξ = F+ξ = ∅,

iii. bξ = ∅,

and Yξ+1 = π
−1
ξ+1(Yξ)∪ {π−1

ξ+1(Mξ) in the caseMξ+1 is a hod premouse and otherwise, Yξ+1 =

π−1
ξ+1(Yξ).

6. Suppose ξ ≤ δ is a limit ordinal and for all γ < ξ, bothMγ and Nγ are defined. ThenMξ and
Nξ are determined as follows68. Set Nξ = limα→ξMα. Assuming clause 4 fails for ξ + 1, the
remaining objects are defined as follows.

(a) Mξ = core(Nξ) and

(b) Yξ = π−1
ξ (YNξ )69.

7. Mδ = Nδ and Yδ,Φδ, F+δ , Fδ, and bδ are undefined.

We say that the mhpc is successful if for some γ,Mγ is a Φ+-iterate of R+. ⊣

The following is the main fact we need, which is a corollary to several lemmas established before.

Lemma 6.38 mhpc is successful.

Proof. The lemma follows easily from Lemma 6.36, Lemma 6.32 and (b) that appears in the proof of
Lemma 6.34 (which was also established in the proof of Lemma 6.32).

To prove the lemma, we simply compare R+ with mhpc-construction ofN and argue that mhpc side
reaches an iterate of R+. As all extender used in mhpc with critical point > ord(R) have background
certificates, the usual stationarity argument shows that such extenders cannot be part of a disagreement in
the resulting comparison process. Lemma 6.36 shows that extenders with critical point .R also cannot be
part of a disagreement, while Lemma 6.32 shows that there cannot be a strategy disagreement. Therefore,
R+ iterates to some model appearing on the mhpc-construction. □

Lemma 6.38 and Lemma 6.32 now imply Theorem 1.3, and this finishes our proof of Theorem 1.3.

66See [7, Definition 3.8.16]. This means that e is the branch of t we must choose.
67Recall that core(M) is the core ofM.
68The rest of the objects will be defined at the next stage of the induction as in clause 4.
69Fξ and bξ are defined at step ξ + 1.
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